Generalizing the Lucas-Kanade algorithm for histogram-based tracking

被引:11
|
作者
Schreiber, David [1 ]
机构
[1] Austin Res Ctr GmbH ARC, Smart Syst Div, A-1220 Vienna, Austria
关键词
template tracking; the Lucas-Kanade algorithm; histogram-based tracking; kernel-based tracking; robust least squares; pedestrian tracking;
D O I
10.1016/j.patrec.2007.12.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel histogram-based tracking algorithm, which is a generalization of the template matching Lucas-Kanade algorithm (and in particular of the inverse compositional version which is more efficient). The algorithm does not make use of any spatial kernel. Instead, the dependency of the histogram on the warping parameters is introduced via a feature kernel. This fact helps us to overcome several limitations of kernel-based methods. The target is represented by a collection of patch-based histograms, thus retaining spatial information. A robust statistics scheme assigns weights to the different patches, rendering the algorithm robust to partial occlusions and appearance changes. We present the algorithm for 1-D histograms (e.g. gray-scale), however extending the algorithm to handle higher dimensional histograms (e.g. color) is straightforward. Our method applies to any warping transformation that forms a group, and to any smooth feature. It has the same asymptotic complexity as the original inverse compositional template matching algorithm. We present experimental results which demonstrate the robustness of our algorithm, using only gray-scale histograms. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:852 / 861
页数:10
相关论文
共 50 条
  • [41] Lucas-Kanade 20 years on: A unifying framework
    Baker, S
    Matthews, I
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) : 221 - 255
  • [42] 稀疏表示的Lucas-Kanade目标跟踪
    徐如意
    陈靓影
    中国图象图形学报, 2013, 18 (03) : 283 - 289
  • [43] Replacing Projective Data Association with Lucas-Kanade for KinectFusion
    Peasley, Brian
    Birchfield, Stan
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 638 - 645
  • [44] Efficient GPU Implementation of Lucas-Kanade through OpenACC
    Haggui, Olfa
    Tadonki, Claude
    Sayadi, Fatma
    Ouni, Bouraoui
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 768 - 775
  • [45] Deep Lucas-Kanade Homography for Multimodal Image Alignment
    Zhao, Yiming
    Huang, Xinming
    Zhang, Ziming
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15945 - 15954
  • [46] Lucas-Kanade Image Registration Using Camera Parameters
    Cho, Sunghyun
    Cho, Hojin
    Tai, Yu-Wing
    Moon, Young Su
    Cho, Junguk
    Lee, Shihwa
    Lee, Seungyong
    INTELLIGENT ROBOTS AND COMPUTER VISION XXIX: ALGORITHMS AND TECHNIQUES, 2012, 8301
  • [47] Using Lucas-Kanade Algorithms to Measure Human Movement
    Mi, Yao
    Bipin, Prakash Kumar
    Shah, Rajeev Kumar
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY, ICICCT 2018, 2019, 835 : 118 - 130
  • [48] CLKN: Cascaded Lucas-Kanade Networks for Image Alignment
    Chang, Che-Han
    Chou, Chun-Nan
    Chang, Edward Y.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3777 - 3785
  • [49] Extending 3D Lucas-Kanade tracking with adaptive templates for head pose estimation
    Chen, Zhih-Wei
    Chiang, Cheng-Chin
    Hsieh, Zi-Tian
    MACHINE VISION AND APPLICATIONS, 2010, 21 (06) : 889 - 903
  • [50] Optimal Filter Estimation for Lucas-Kanade Optical Flow
    Sharmin, Nusrat
    Brad, Remus
    SENSORS, 2012, 12 (09) : 12694 - 12709