Isometric immersions of contact Riemannian manifolds in real space forms

被引:0
|
作者
Chen, BY [1 ]
Mihai, I
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Bucharest, Fac Math, Bucharest 70109, Romania
来源
HOUSTON JOURNAL OF MATHEMATICS | 2005年 / 31卷 / 03期
关键词
contact metric manifolds; mean curvature; contact Riemannian invariants; inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we define some contact Riemannian invariants for almost contact metric manifolds analogues to those invariants introduced in [5, 6]. We then establish sharp inequalities between these contact Riemannian invariants and the squared mean curvature for almost contact Riemannian manifolds in a real space form. We also investigate almost contact Riemannian submanifolds which verify the equality case of the inequalities. Examples of contact Riemannian submanifolds satisfying the equality case are provided as well.
引用
收藏
页码:743 / 764
页数:22
相关论文
共 50 条
  • [41] Immersions of compact riemannian manifolds into a ball of a complex space form
    Francisco J. Carreras
    Fernando Giménez
    Vicente Miquel
    Mathematische Zeitschrift, 1997, 225 : 103 - 113
  • [42] ISOMETRIC IMMERSIONS OF RIEMANNIAN PRODUCTS REVISITED
    BARBOSA, JL
    DAJCZER, M
    TOJEIRO, R
    COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (02) : 281 - 290
  • [43] ON QUASI-MINIMAL ISOMETRIC IMMERSIONS INTO NON-FLAT SEMI RIEMANNIAN SPACE FORMS OF INDEX TWO
    Turgay, Nurettin Cenk
    Kelleci, Alev
    Sen, Ruya Yegin
    Canfes, Elif Ozkara
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 255 - 265
  • [44] SYMMETRICAL IMMERSIONS IN PSEUDO-RIEMANNIAN SPACE-FORMS
    BLOMSTROM, C
    LECTURE NOTES IN MATHEMATICS, 1985, 1156 : 30 - 45
  • [45] Isometric immersions in codimension two of warped products into space forms
    Dajczer, M
    Tojeiro, R
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 711 - 746
  • [46] Isometric immersions with flat normal bundle between space forms
    Marcos Dajczer
    Christos-Raent Onti
    Theodoros Vlachos
    Archiv der Mathematik, 2021, 116 : 577 - 583
  • [47] MINIMAL ISOMETRIC IMMERSIONS OF SPHERICAL SPACE-FORMS IN SPHERES
    DETURCK, D
    ZILLER, W
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) : 428 - 458
  • [48] Isometric immersions with flat normal bundle between space forms
    Dajczer, Marcos
    Onti, Christos-Raent
    Vlachos, Theodoros
    ARCHIV DER MATHEMATIK, 2021, 116 (05) : 577 - 583
  • [49] Generalized DPW method and an application to isometric immersions of space forms
    David Brander
    Josef Dorfmeister
    Mathematische Zeitschrift, 2009, 262
  • [50] Convexity, Rigidity, and Reduction of Codimension of Isometric Immersions into Space Forms
    de Lima, Ronaldo F.
    de Andrade, Rubens L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (01): : 119 - 136