SAMHD1 Promotes the Antiretroviral Adaptive Immune Response in Mice Exposed to Lipopolysaccharide

被引:3
|
作者
Barrett, BradleyS [1 ]
Nguyen, David H. [1 ]
Xu, Joella [2 ]
Guo, Kejun [1 ]
Shetty, Shravida [1 ]
Jones, Sean T. [1 ,3 ]
Mickens, Kaylee L. [1 ,3 ]
Shepard, Caitlin [2 ]
Roers, Axel [4 ]
Behrendt, Rayk [4 ]
Wu, Li [5 ]
Kim, Baek [2 ,6 ]
Santiago, Mario L. [1 ,3 ]
机构
[1] Univ Colorado, Dept Med, Sch Med, Aurora, CO 80045 USA
[2] Emory Univ, Sch Med, Dept Pediat, Atlanta, GA USA
[3] Univ Colorado, Dept Immunol & Microbiol, Sch Med, Aurora, CO 80045 USA
[4] Tech Univ Dresden, Fac Med, Inst Immunol, Dresden, Germany
[5] Univ Iowa, Carver Coll Med, Dept Microbiol & Immunol, Iowa City, IA USA
[6] Childrens Healthcare Atlanta, Ctr Drug Discovery, Atlanta, GA USA
来源
JOURNAL OF IMMUNOLOGY | 2022年 / 208卷 / 02期
关键词
IMMUNODEFICIENCY-VIRUS TYPE-1; MURINE LEUKEMIA-VIRUS; T-CELL RESPONSES; FRIEND RETROVIRUS INFECTION; RESTRICTION FACTOR SAMHD1; MICROBIAL TRANSLOCATION; HIV-1; INFECTION; MOUSE SAMHD1; REPLICATION; INNATE;
D O I
10.4049/jimmunol.2001389
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
SAMHD1 is a potent HIV-1 restriction factor that blocks reverse transcription in monocytes, dendritic cells and resting CD4(+) T cells by decreasing intracellular dNTP pools. However, SAMHD1 may diminish innate immune sensing and Ag presentation, resulting in a weaker adaptive immune response. To date, the role of SAMHD1 on antiretroviral immunity remains unclear, as mouse SAMHD1 had no impact on murine retrovirus replication in prior in vivo studies. Here, we show that SAMHD1 significantly inhibits acute Friend retrovirus infection in mice. Pretreatment with LPS, a significant driver of inflammation during HIV-1 infection, further unmasked a role for SAMHD1 in influencing immune responses. LPS treatment in vivo doubled the intracellular dNTP levels in immune compartments of SAMHD1 knockout but not wild-type mice. SAMHD1 knockout mice exhibited higher plasma infectious viremia and proviral DNA loads than wild-type mice at 7 d postinfection (dpi), and proviral loads inversely correlated with a stronger CD8(+) T cell response. SAMHD1 deficiency was also associated with weaker NK, CD4(+) T and CD8(+) T cell responses by 14 dpi and weaker neutralizing Ab responses by 28 dpi. Intriguingly, SAMHD1 influenced these cell-mediated immune (14 dpi) and neutralizing Ab (28 dpi) responses in male but not female mice. Our findings formally demonstrate SAMHD1 as an antiretroviral factor in vivo that could promote adaptive immune responses in a sex-dependent manner. The requirement for LPS to unravel the SAMHD1 immunological phenotype suggests that comorbidities associated with a "leaky" gut barrier may influence the antiviral function of SAMHD1 in vivo.
引用
收藏
页码:444 / 453
页数:11
相关论文
共 50 条
  • [31] Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection
    Oya Cingöz
    Nicolas D. Arnow
    Mireia Puig Torrents
    Norbert Bannert
    Retrovirology, 18
  • [32] Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection
    Cingoez, Oya
    Arnow, Nicolas D.
    Torrents, Mireia Puig
    Bannert, Norbert
    RETROVIROLOGY, 2021, 18 (01)
  • [33] SAMHD1 Inhibitor Combined with Immune Checkpoint Inhibitor Elicits an Anti-AML Immunity
    Zhang, Lei
    Dong, Haojie
    He, Xin
    Salhotra, Amandeep
    Marcucci, Guido
    Luo, Yun
    Li, Ling
    BLOOD, 2023, 142
  • [34] DNA damage response signaling does not trigger redistribution of SAMHD1 to nuclear foci
    Medeiros, Ana Carla
    Soares, Claudia S.
    Coelho, Priscila O.
    Vieira, Nichelle A.
    Baqui, Munira M. A.
    Teixeira, Felipe R.
    Gomes, Marcelo D.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 499 (04) : 790 - 796
  • [35] Locally Produced SAMHD1 Immune Complexes Are Associated With the Development of Idiopathic Pulmonary Arterial Hypertension
    Saito, Toshie
    Tamosiuniene, Rasa
    Sharpe, Orr
    Robinson, William H.
    Nicolls, Mark
    Rabinovitch, Marlene
    CIRCULATION, 2014, 130
  • [36] SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
    Clifford, Ruth
    Louis, Tania
    Robbe, Pauline
    Ackroyd, Sam
    Burns, Adam
    Timbs, Adele T.
    Colopy, Glen Wright
    Dreau, Helene
    Sigaux, Francois
    Judde, Jean Gabriel
    Rotger, Margalida
    Telenti, Amalio
    Lin, Yea-Lih
    Pasero, Philippe
    Maelfait, Jonathan
    Titsias, Michalis
    Cohen, Dena R.
    Henderson, Shirley J.
    Ross, Mark T.
    Bentley, David
    Hillmen, Peter
    Pettitt, Andrew
    Rehwinkel, Jan
    Knight, Samantha J. L.
    Taylor, Jenny C.
    Crow, Yanick J.
    Benkirane, Monsef
    Schuh, Anna
    BLOOD, 2014, 123 (07) : 1021 - 1031
  • [37] SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice
    Kodigepalli, Karthik M.
    Li, Minghua
    Bonifati, Serena
    Panfil, Amanda R.
    Green, Patrick L.
    Liu, Shan-Lu
    Wu, Li
    CELL CYCLE, 2018, 17 (23) : 2564 - 2576
  • [38] Host SAMHD1 protein promotes HIV-1 recombination in macrophages (vol 289, pg 2489, 2014)
    Nguyen, Laura A.
    Kim, Dong-Hyun
    Daly, Michele B.
    Allan, Kevin C.
    Kim, Baek
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (24) : 16642 - 16642
  • [39] The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells
    Qin, Zhihua
    Bonifati, Serena
    St Gelais, Corine
    Li, Tai-Wei
    Kim, Sun-Hee
    Antonucci, Jenna M.
    Mahboubi, Bijan
    Yount, Jacob S.
    Xiong, Yong
    Kim, Baek
    Wu, Li
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (06) : 1575 - 1586
  • [40] SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic leukaemias to nelarabine
    Rothenburger, Tamara
    McLaughlin, Katie-May
    Herold, Tobias
    Schneider, Constanze
    Oellerich, Thomas
    Rothweiler, Florian
    Feber, Andrew
    Fenton, Tim R.
    Wass, Mark N.
    Keppler, Oliver T.
    Michaelis, Martin
    Cinatl, Jindrich, Jr.
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)