Quantum geodesics on quantum Minkowski spacetime

被引:6
|
作者
Liu, Chengcheng [1 ]
Majid, Shahn [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
关键词
quantum geodesics; noncommutative torus; quantum Riemannian geometry; quantum Minkowski spacetime; quantum gravity; CONNECTIONS;
D O I
10.1088/1751-8121/ac7593
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a recent formalism of quantum geodesics to the well-known quantum Minkowski spacetime [x(i), t] = t(lambda p)chi(i) with its flat quantum metric as a model of quantum gravity effects, with lambda(p) the Planck scale. As examples, quantum geodesic flow of a plane wave gets an order lambda(p) frequency dependent correction to the classical geodesic velocity. A quantum geodesic flow with classical velocity v of a Gaussian with width root 2 beta initially centred at the origin changes its shape but its centre of mass moves with < x >/< t >= v(1 + 3 lambda(2)(p)/2 beta+ O(lambda(3)(p))), an order lambda(2)(p) correction. This implies, at least within perturbation theory, that a 'point particle' cannot be modelled as an infinitely sharp Gaussian due to quantum gravity corrections. For contrast, we also look at quantum geodesics on the noncommutative torus with a 2D curved weak quantum Levi-Civita connection.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Quantum Minkowski spaces
    Podles, P
    PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 97 - 106
  • [32] Geodesics in the γ spacetime
    Herrera, L
    Paiva, FM
    Santos, NO
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (06): : 649 - 659
  • [33] Quantum Spacetime: a Disambiguation
    Piacitelli, Gherardo
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [34] Spacetime as a quantum circuit
    A. Ramesh Chandra
    Jan de Boer
    Mario Flory
    Michal P. Heller
    Sergio Hörtner
    Andrew Rolph
    Journal of High Energy Physics, 2021
  • [35] Building a Quantum Spacetime
    Carlos N. Kozameh
    International Journal of Theoretical Physics, 1999, 38 : 1103 - 1112
  • [36] A model of quantum spacetime
    Favalli, T.
    Smerzi, A.
    AVS QUANTUM SCIENCE, 2022, 4 (04):
  • [37] Building a quantum spacetime
    Kozameh, CN
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (04) : 1103 - 1112
  • [38] Spacetime as a quantum circuit
    Chandra, A. Ramesh
    de Boer, Jan
    Flory, Mario
    Heller, Michal P.
    Hortner, Sergio
    Rolph, Andrew
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [39] Thermal Quantum Spacetime
    Kotecha, Isha
    UNIVERSE, 2019, 5 (08)
  • [40] Spacetime quantum actions
    Diaz, N. L.
    Matera, J. M.
    Rossignoli, R.
    PHYSICAL REVIEW D, 2021, 103 (06)