Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches

被引:160
|
作者
Kjaergaard, Henrik G. [1 ,2 ]
Garden, Anna L. [1 ,2 ]
Chaban, Galina M. [3 ]
Gerber, R. Benny [4 ,5 ,6 ]
Matthews, Devin A. [7 ,8 ]
Stanton, John F. [7 ,8 ]
机构
[1] Univ Otago, Dept Chem, Dunedin 9054, New Zealand
[2] Aarhus Univ, Dept Chem, Ctr Theoret Chem, Lundbeck Fdn, DK-8000 Aarhus, Denmark
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[5] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[6] Hebrew Univ Jerusalem, Fritz Haber Res Ctr, IL-91904 Jerusalem, Israel
[7] Univ Texas Austin, Ctr Theoret Chem, Dept Chem, Austin, TX 78712 USA
[8] Univ Texas Austin, Ctr Theoret Chem, Dept Biochem, Austin, TX 78712 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2008年 / 112卷 / 18期
关键词
D O I
10.1021/jp710066f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have calculated frequencies and intensities of fundamental and overtone vibrational transitions in water and water dimer with use of different vibrational methods. We have compared results obtained with correlation-corrected vibrational self-consistent-field theory and vibrational second-order perturbation theory both using normal modes and finally with a harmonically coupled anharmonic oscillator local mode model including CH-stretching and HOH-bending local modes. The coupled cluster with singles, doubles, and perturbative triples ab initio method with augmented correlation-consistent triple-zeta Dunning and atomic natural orbital basis sets has been used to obtain the necessary potential energy and dipole moment surfaces. We identify the strengths and weaknesses of these different vibrational approaches and compare our results to the available experimental results.
引用
收藏
页码:4324 / 4335
页数:12
相关论文
共 50 条
  • [31] Calculation of vibrational frequencies using mathcad.
    Burns, WA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U372 - U372
  • [32] Calculation of the vibrational frequencies and structure of zirconium tetrahydroborate
    Jensen, JO
    VIBRATIONAL SPECTROSCOPY, 2003, 31 (02) : 227 - 250
  • [33] For analytical calculation of assignments of vibrational spectroscopic frequencies
    Fadini, A
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2001, 627 (04): : 572 - 573
  • [34] Theoretical Calculation of the Geometry and Vibrational Frequencies of Triphenylmethane
    Shishlov, N. M.
    Khursan, S. L.
    Lazarev, V. V.
    Nechaev, V. V.
    JOURNAL OF APPLIED SPECTROSCOPY, 2018, 85 (04) : 581 - 587
  • [35] Vibrational conical intersections in the water dimer
    Hamm, Peter
    Stock, Gerhard
    MOLECULAR PHYSICS, 2013, 111 (14-15) : 2046 - 2056
  • [36] WATER DIMER VIBRATIONAL-SPECTRUM
    VIGASIN, AA
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1983, 19 (05): : 542 - 545
  • [37] On the calculation of the vibrational frequencies of polycyclic aromatic hydrocarbons
    Bauschlicher, Charles W.
    Ricca, Alessandra
    MOLECULAR PHYSICS, 2010, 108 (19-20) : 2647 - 2654
  • [38] CALCULATION OF VIBRATIONAL FREQUENCIES USING MOLECULAR TRAJECTORIES
    DIETER, KM
    STEWART, JJP
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1988, 40 : 143 - 149
  • [39] Theoretical Calculation of the Geometry and Vibrational Frequencies of Triphenylmethane
    N. M. Shishlov
    S. L. Khursan
    V. V. Lazarev
    V. V. Nechaev
    Journal of Applied Spectroscopy, 2018, 85 : 581 - 587
  • [40] CALCULATION OF THE VIBRATIONAL FREQUENCIES OF CRYSTALLINE BISPHENOL A POLYCARBONATE
    KULCZYCKI, A
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1985, 41 (12): : 1427 - 1431