Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions

被引:27
|
作者
Nakada, Akinobu [1 ,2 ]
Matsumoto, Takeshi [3 ]
Chang, Ho-Chol [1 ]
机构
[1] Chuo Univ, Fac Sci & Engn, Dept Appl Chem, 1-13-27 Kasuga,Bunkyo ku, Tokyo 1128551, Japan
[2] Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Tokyo Inst Technol, Inst Innovat Res, Nanospace Catalysis Unit, 4259 Nagatsuta,Midori ku, Yokohama 2268503, Japan
关键词
Redox-active ligand; Non -innocent ligand; Proton -coupled electron transfer; Chemical -bond activation; Chemical -bond formation; Excited -state hydrogen detachment; TRANSITION-METAL-COMPLEXES; ELECTROCATALYTIC HYDROGEN EVOLUTION; SINGLE-ELECTRON TRANSFER; WATER-OXIDATION; REDUCTIVE ELIMINATION; DITHIOLENE COMPLEX; PLATINUM COMPLEXES; NONRADIATIVE DECAY; ORTHO-BENZOQUINONE; COUPLING REACTIONS;
D O I
10.1016/j.ccr.2022.214804
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A central issue in the design of reactions and catalysts based on metal complexes is the hybridization of functional ligands with metal atoms. Recent studies have demonstrated that redox-active/non-innocent ligands can potentially act as spectators, moderators, electron/H+/0/- supplier/poolers, cooperators, or actors, depending on their role(s) in the reaction. In this review, we will highlight selected stoichiometric or catalytic reactions driven by substituted ethylenes and dithiolenes, as well as six-membered ligands, such as catecholato, benezendithiolato, aminophenolato, and o-phenelyenediamine derivatives. Chemically, electrochemically, and photochemically induced lability of these ligands can be expected to provide an enriched recipe for a platform toward useful bond-activation and bond-formation processes.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Redox-Active Pincer Ligands
    van der Vlugt, Jarl Ivar
    [J]. METAL-LIGAND CO-OPERATIVITY: CATALYSIS AND THE PINCER-METAL PLATFORM, 2021, 68 : 135 - 179
  • [2] Redox-Active Ligands in Catalysis
    Praneeth, Vijayendran K. K.
    Ringenberg, Mark R.
    Ward, Thomas R.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (41) : 10228 - 10234
  • [3] Redox-active ligands in catalysis
    Luca, Oana R.
    Crabtree, Robert H.
    [J]. CHEMICAL SOCIETY REVIEWS, 2013, 42 (04) : 1440 - 1459
  • [4] A Redox-Active Electrochemical Decoder
    Gaikwad, Pramod
    Misal, Mahavir
    Khaire, Siddhi
    Raafik, Abdul
    Aralekallu, Shambhulinga
    Varhade, Swapnil
    Bhat, Zahid Manzoor
    Kottaichamy, Alagar Raja
    Devendrachari, Mruthyunjayachari Chattanahalli
    Gautam, Manu
    Thotiyl, Musthafa Ottakam
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [5] Conductance of redox-active single molecular junctions: an electrochemical approach
    Li, Zhihai
    Pobelov, Ilya
    Han, Bo
    Wandlowski, Thomas
    Blaszczyk, Alfred
    Mayor, Marcel
    [J]. NANOTECHNOLOGY, 2007, 18 (04)
  • [6] Molecular redox-active organic materials for electrochemical carbon capture
    Hyowon Seo
    [J]. MRS Communications, 2023, 13 (6) : 994 - 1008
  • [7] Molecular redox-active organic materials for electrochemical carbon capture
    Seo, Hyowon
    [J]. MRS COMMUNICATIONS, 2023, 13 (06) : 994 - 1008
  • [8] Preface: Forum on Redox-Active Ligands
    Chirik, Paul J.
    [J]. INORGANIC CHEMISTRY, 2011, 50 (20) : 9737 - 9740
  • [9] Redox-active Schiff base ligands
    Hall, CD
    Sachsinger, N
    Nyburg, SC
    Steed, JW
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1998, 561 (1-2) : 209 - 219
  • [10] Recent developments in redox-active ligands
    Cowley, Alan H.
    Evans, Daniel A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245