Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints

被引:19
|
作者
Leok, Melvin [1 ]
Ohsawa, Tomoki [1 ]
Sosa, Diana [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ La Laguna, Dept Econ Aplicada, Tenerife, Canary Islands, Spain
[3] Univ La Laguna, Unidad Asociada ULL, CSIC Geometria Diferencial & Mecan Geometr, Fac CC EE & Empresariales, Tenerife, Canary Islands, Spain
基金
美国国家科学基金会;
关键词
DIRAC STRUCTURES; MECHANICS; MOTION; EQUIVALENCE; SYMMETRIES; REDUCTION; ALGORITHM; EQUATION;
D O I
10.1063/1.4736733
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend Hamilton-Jacobi theory to Lagrange-Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton Jacobi equation as the Dirac-Hamilton-Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac Hamilton Jacobi equation reduces to a variant of the nonholonomic Hamilton Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac Hamilton Jacobi equation can be used to exactly integrate the equations of motion. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736733]
引用
收藏
页数:29
相关论文
共 50 条
  • [21] ON THE PROBLEM OF A GENERALIZATION OF THE HAMILTON-JACOBI METHOD FOR NONHOLONOMIC SYSTEMS.
    Rumyantsev, V.V.
    Sumbatov, A.S.
    1978, 58 (11): : 477 - 481
  • [22] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [23] The Teleparallel Lagrangian and Hamilton-Jacobi formalism
    Pimentel, BM
    Pompeia, PJ
    da Rocha-Neto, JF
    Teixeira, RG
    GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (05) : 877 - 884
  • [24] Improved Hamilton-Jacobi quantization for a nonholonomic system
    Hong, ST
    Kim, YW
    Kim, WT
    Park, YJ
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 43 (06) : 981 - 986
  • [25] Nonconvex degenerate Hamilton-Jacobi equations
    Camilli, F
    Siconolfi, A
    MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) : 1 - 21
  • [26] A Hamilton-Jacobi theory for implicit differential systems
    Esen, Ogul
    de Leon, Manuel
    Sardon, Cristina
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [27] The Hamilton-Jacobi theory for contact Hamiltonian systems
    De León, Manuel
    Lainz, Manuel
    Muñiz-Brea, Álvaro
    arXiv, 2021,
  • [28] The Hamilton-Jacobi Theory for Contact Hamiltonian Systems
    de Leon, Manuel
    Lainz, Manuel
    Muniz-Brea, Alvaro
    MATHEMATICS, 2021, 9 (16)
  • [29] DIRAC STRUCTURES AND HAMILTON-JACOBI THEORY FOR LAGRANGIAN MECHANICS ON LIE ALGEBROIDS
    Leok, Melvin
    Sosa, Diana
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (04): : 421 - 442
  • [30] DISCRETE HAMILTON-JACOBI THEORY
    Ohsawa, Tomoki
    Bloch, Anthony M.
    Leok, Melvin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) : 1829 - 1856