Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints

被引:19
|
作者
Leok, Melvin [1 ]
Ohsawa, Tomoki [1 ]
Sosa, Diana [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ La Laguna, Dept Econ Aplicada, Tenerife, Canary Islands, Spain
[3] Univ La Laguna, Unidad Asociada ULL, CSIC Geometria Diferencial & Mecan Geometr, Fac CC EE & Empresariales, Tenerife, Canary Islands, Spain
基金
美国国家科学基金会;
关键词
DIRAC STRUCTURES; MECHANICS; MOTION; EQUIVALENCE; SYMMETRIES; REDUCTION; ALGORITHM; EQUATION;
D O I
10.1063/1.4736733
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend Hamilton-Jacobi theory to Lagrange-Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton Jacobi equation as the Dirac-Hamilton-Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac Hamilton Jacobi equation reduces to a variant of the nonholonomic Hamilton Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac Hamilton Jacobi equation can be used to exactly integrate the equations of motion. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736733]
引用
收藏
页数:29
相关论文
共 50 条
  • [1] On the Hamilton-Jacobi theory for singular lagrangian systems
    de Leon, Manuel
    Carlos Marrero, Juan
    Martin de Diego, David
    Vaquero, Miguel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [2] Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems
    Iglesias-Ponte, David
    de Leon, Manuel
    de Diego, David Martin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [3] GEOMETRIC HAMILTON-JACOBI THEORY FOR NONHOLONOMIC DYNAMICAL SYSTEMS
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (03) : 431 - 454
  • [4] HAMILTON-JACOBI METHOD FOR NON HOLONOMIC SYSTEMS
    NAZIEV, EK
    [J]. PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1972, 36 (06): : 1108 - 1113
  • [5] Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations
    Ennaji, Hamza
    Igbida, Noureddine
    Van Thanh Nguyen
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [6] THE HAMILTON-JACOBI EQUATION, INTEGRABILITY, AND NONHOLONOMIC SYSTEMS
    Bates, Larry M.
    Fasso, Francesco
    Sansonetto, Nicola
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04): : 441 - 449
  • [7] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    [J]. TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 33 (01): : 108 - &
  • [8] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 172 (14) : 572 - &
  • [9] A new perspective on nonholonomic brackets and Hamilton-Jacobi theory
    de Leon, Manuel
    Lainz, Manuel
    Lopez-Gordon, Asier
    Marrero, Juan Carlos
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2024, 198
  • [10] Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization
    Ohsawa, Tomoki
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Zenkov, Dmitry V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1263 - 1291