Diffusion processes and the asymptotic bulk gap probability for the real Ginibre ensemble

被引:14
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; coalescence process; gap probability; RANDOM POLYNOMIALS; WIGNER SURMISE; MATRIX; DISTRIBUTIONS; EIGENVALUES; DYNAMICS;
D O I
10.1088/1751-8113/48/32/324001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is known that the bulk scaling limit of the real eigenvalues for the real Ginibre ensemble is equal in distribution to the rescaled t -> infinity limit of the annihilation process A+ A -> empty set. Furthermore, deleting each particle at random in the rescaled t -> infinity limit of the coalescence process A+ A -> A, a process equal in distribution to the annihilation process results. We use these inter- relationships to deduce from the existing literature the asymptotic small and large distance form of the gap probability for the real Ginibre ensemble. In particular, the leading form of the latter is shown to be equal to exp(-(zeta( 3/2) (2 root 2 pi)) s), where s denotes the gap size and zeta( z) denotes the Riemann zeta function. It is shown how this can be rigorously established using an asymptotic formula for matrix Fredholm operators. A determinant formula is derived for the gap probability in the finite N case, and this is used to illustrate the asymptotic formulas against numerical computations.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Transitional probability densities of the diffusion processes
    Medvedev, Gennady A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2009, 8 (03): : 40 - 55
  • [42] ASYMPTOTIC ESTIMATES FOR THE PROBABILITY OF RUIN IN A POISSON MODEL WITH DIFFUSION
    VERAVERBEKE, N
    INSURANCE MATHEMATICS & ECONOMICS, 1993, 13 (01): : 57 - 62
  • [43] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits (vol 291, pg 177, 2009)
    Borodin, Alexei
    Poplavskyi, Mihail
    Sinclair, Christopher D.
    Tribe, Roger
    Zaboronski, Oleg
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 1051 - 1055
  • [44] ASYMPTOTIC PROBABILITY OF FIRST DEGENERATION FOR BRANCHING PROCESSES WITH IMMIGRATION
    VATUTIN, VA
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (01): : 26 - 35
  • [45] Asymptotic behaviour in convection-diffusion processes
    Reyes, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (03) : 301 - 318
  • [46] Asymptotic flux across hypersurfaces for diffusion processes
    Posilicano, A
    Ugolini, S
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, : 185 - 197
  • [47] Real diffusion with complex spectral gap
    Bony, Jean-Francois
    Michel, Laurent
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (04) : 1383 - 1407
  • [48] Probability tree algorithm for general diffusion processes
    Ingber, L
    Chen, C
    Mondescu, RP
    Muzzall, D
    Renedo, M
    PHYSICAL REVIEW E, 2001, 64 (05): : 6 - 056702
  • [49] ASYMPTOTIC PROPERTIES OF MAXIMUM PROBABILITY ESTIMATES IN MARKOV-PROCESSES
    ROUSSAS, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A24 - A24
  • [50] ASYMPTOTIC BEHAVIOUR OF EXTINCTION PROBABILITY OF INTERACTING BRANCHING COLLISION PROCESSES
    Chen, Anyue
    Li, Junping
    Chen, Yiqing
    Zhou, Dingxuan
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (01) : 219 - 234