Solar hydrogen production via sulphur based thermochemical water-splitting

被引:67
|
作者
Sattler, Christian [1 ]
Roeb, Martin [1 ]
Agrafiotis, Christos [1 ]
Thomey, Dennis [1 ]
机构
[1] German Aerosp Ctr DLR, Deutsch Zentrum Luft & Raumfahrt, D-51147 Cologne, Germany
关键词
Redox reaction; Water splitting; Thermochemical cycles; Sulphur cycles; Sulphuric acid; SI; Sulphur iodine; Hybrid sulphur; SO3 DECOMPOSITION ACTIVITY; OXYGEN-GENERATING REACTION; ACID DECOMPOSITION; CATALYTIC DECOMPOSITION; TRIOXIDE DECOMPOSITION; SYNGAS PRODUCTION; HI-DECOMPOSITION; CYCLE PROCESS; IODINE CYCLE; REACTOR;
D O I
10.1016/j.solener.2017.05.060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The first technical developments on thermochemical cycles for hydrogen production are based on the use of sulphur as a redox material. After the oil crises of the 1970s, high temperature (over 1200 K) heat from nuclear very high temperature reactors (VHTRs) was considered as a promising energy vector to produce fuels for the transport sector. The chemical reactions to convert water into hydrogen must fit to this heat source. As metal-oxide based cycles need higher temperature levels they were not taken into account at that time. The development of the sulphur cycles lost momentum during the 1980s because of cheap fossil fuels. But in the beginning of the 2000s they came back into the focus with the intention to reduce CO2 emissions. At that time their coupling to heat from concentrated solar radiation in large scale was developed. The interest from the nuclear energy side faded again when the interest in VHTRs lost momentum. In parallel concentrated solar technologies were not implemented fast enough. The developments were mainly achieved by research institutions that concentrated more on the metal-oxide technologies. However, sulphur based cycles remain very promising because the necessary temperature is low compared to metal-oxide cycles and sulphur and sulphuric acid are amongst the most important chemical products offering a high potential of synergies with other processes. The present analysis gives an overview on recent developments and the state-of-the-art of this type of cycles, has a look on the most important performance parameters involved, and gives an outlook on further potential and necessary developments. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 47
页数:18
相关论文
共 50 条
  • [1] Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
    Boretti, Alberto
    Nayfeh, Jamal
    Al-Maaitah, Ayman
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [2] Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
    Boretti, Alberto
    Nayfeh, Jamal
    Al-Maaitah, Ayman
    [J]. Frontiers in Energy Research, 2021, 9
  • [3] Hydrogen production via thermochemical water-splitting by lithium redox reaction
    Nakamura, Naoya
    Miyaoka, Hiroki
    Ichikawa, Takayuki
    Kojima, Yoshitsugu
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 580 : S410 - S413
  • [4] Hydrogen production via thermochemical water-splitting by lithium redox reaction
    Nakamura, Naoya
    Miyaoka, Hiroki
    Ichikawa, Takayuki
    Kojima, Yoshitsugu
    [J]. Journal of Alloys and Compounds, 2013, 580 (SUPPL1):
  • [5] A review on hydrogen production thermochemical water-splitting cycles
    Mehrpooya, Mehdi
    Habibi, Roghayeh
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 275
  • [6] Nickel Manganese for Thermochemical Water-Splitting and Hydrogen Production
    Abdelal, Omar A. A.
    [J]. ARAB JOURNAL OF NUCLEAR SCIENCES AND APPLICATIONS, 2012, 45 (02): : 392 - 400
  • [7] SOLAR THERMOCHEMICAL H2 PRODUCTION VIA WATER-SPLITTING REACTION
    Bhosale, R. R.
    Yelakanti, S. S.
    Pasala, X.
    Puszynski, J. A.
    Shende, R. V.
    [J]. PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE, VOL 91, 2012, 91 : 215 - 215
  • [8] PRODUCTION OF SOLAR HYDROGEN BY A NOVEL, 2-STEP, WATER-SPLITTING THERMOCHEMICAL CYCLE
    TAMAURA, Y
    STEINFELD, A
    KUHN, P
    EHRENSBERGER, K
    [J]. ENERGY, 1995, 20 (04) : 325 - 330
  • [9] Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions
    Steinfeld, A
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (06) : 611 - 619
  • [10] Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions
    Xiao, Lan
    Wu, Shuang-Ying
    Li, You-Rong
    [J]. RENEWABLE ENERGY, 2012, 41 : 1 - 12