Channel estimation based on adaptive neuro-fuzzy inference system in OFDM

被引:0
|
作者
Seyman, M. Nuri [1 ]
Taspinar, Necmi [2 ]
机构
[1] Kirikkale Univ, Kirikkale Vocat Tech Sch, Kirikkale, Turkey
[2] Erciyes Univ, Dept Elect & Elect Engn, TR-38039 Kayseri, Turkey
关键词
OFDM; channel estimation; ANFIS; channel impulse response (CIR);
D O I
10.1093/ietcom/e9l-b.7.2426
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter we purpose adaptive neuro-fuzzy inference system (ANFIS) for channel estimation in orthogonal frequency division multiplexing (OFDM) systems. To evaluate the performance of this estimator, we compare the ANFIS with least square (LS) algorithm, minimum mean square error (MMSE) algorithm by using bit error rate (BER) and mean square error (MSE) criterias. According to computer simulations the performance of ANFIS has better performance than LS algorithm and close to MMSE algorithm. Besides there is unnecessity to send pilot when used the ANFIS.
引用
收藏
页码:2426 / 2430
页数:5
相关论文
共 50 条
  • [31] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    [J]. VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [32] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    [J]. Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [33] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    [J]. RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [34] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [35] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    [J]. FERROELECTRICS, 2008, 372 : 54 - 65
  • [36] A novel gait analysis system based on adaptive neuro-fuzzy inference system
    Su, Xu
    Xu, Zhou
    Yi-Ning, Sun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1265 - 1269
  • [37] Application of adaptive Neuro-Fuzzy inference system for the estimation of roughness coefficient of a meandering open-channel flow
    Moharana, S.
    Khatua, K.K.
    Sahu, M.
    [J]. International Journal of Sustainable Development and Planning, 2015, 10 (01) : 87 - 99
  • [38] Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia
    Benzy, V. K.
    Jasmin, E. A.
    Koshy, Rachel Cherian
    Amal, Frank
    Indiradevi, K. P.
    [J]. JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2018, 17 (01) : 43 - 51
  • [39] Estimation of the Elemental Composition of Biomass Using Hybrid Adaptive Neuro-Fuzzy Inference System
    Obafemi O. Olatunji
    Stephen Akinlabi
    Nkosinathi Madushele
    Paul A. Adedeji
    [J]. BioEnergy Research, 2019, 12 : 642 - 652
  • [40] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    [J]. APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032