The discrepancy of some real sequences

被引:2
|
作者
Haili, HK [1 ]
Nair, R
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Univ Liverpool, Liverpool L69 7ZL, Merseyside, England
关键词
D O I
10.7146/math.scand.a-14423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (lambda(n))(ngreater than or equal to0) be a sequence of real numbers such that there exists delta > 0 such that \lambda(n+1) - lambda(n)\ greater than or equal to delta, n = 0, 1,.... For a real number y let (y) denote its fractional part. Also, for the real number x let D(N, x) denote the discrepancy of the numbers {lambda(0)x},..., [lambda(N-1)x}. We show that given epsilon > 0, D(N, x) = o (N-1 (2) over bar(logN)(3 (2) over bar+ epsilon)) almost everywhere with respect to Lebesgue measure.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 50 条