Explicit min-max polynomials on the disc

被引:0
|
作者
Moale, Ionela [1 ]
Peherstorfer, Franz [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Anal, Grp Dynam Syst & Approximat Theory, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
LEAST DEVIATION; APPROXIMATION; ZERO;
D O I
10.1016/j.jat.2011.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Pi(2)(n+m-1) := {Sigma(0 <= i+j <= n+m-1) c(i,j)x(i)y(j) : c(i,j) is an element of R} the space of polynomials of two variables with real coefficients of total degree less than or equal to n + m - 1. Let b(0), b(1), ... , b(l) is an element of R be given. For n, m is an element of N, n >= l + 1 we look for the polynomial b(0)x(n) y(m) + b(1)x(n-1) y(m+1) + ... + b(l)x(n-1) y(m+1) + q(x, y), q(x, y) is an element of Pi(2)(n+m-1), which has least maximum norm on the disc and call such a polynomial a min-max polynomial. First we introduce the polynomial 2P(n,m)(x, y) = xG(n-1,m)(x, y) + yG(n,m-1)(x, y) = 2x(n) y(m) + q(x, y) and q(x, y) is an element of Pi(2)(n+m-1), where G(n,m)(x, y) := 1/2(n+m) (U(n)(x)U(m)(y) + U(n-2)(x)U(m-2)(y)), and show that it is a min-max polynomial on the disc. Then we give a sufficient condition on the coefficients b(j), j = 0, ... , l, l fixed, such that for every n, m is an element of N, n >= l + 1, the linear combination Sigma(l)(nu=0) b(nu) P(n-nu,m+nu)(x, y) is a min-max polynomial. In fact the more general case, when the coefficients b(j) and l are allowed to depend on n and in. is considered. So far, up to very special cases, min-max polynomials are known only for x(n) y(m), n, m is an element of N(0). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:707 / 723
页数:17
相关论文
共 50 条
  • [21] SYNTHESIS OF MIN-MAX STRATEGIES
    GUTMAN, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (04) : 515 - 523
  • [22] A min-max theorem on tournaments
    Chen, Xujin
    Hu, Xiaodong
    Zang, Wenan
    SIAM JOURNAL ON COMPUTING, 2007, 37 (03) : 923 - 937
  • [23] MIN-MAX INTERVAL CALCULUS
    JAHN, KU
    MATHEMATISCHE NACHRICHTEN, 1976, 71 : 267 - 272
  • [24] MORE ON MIN-MAX ALLOCATION
    PORTEUS, EL
    YORMARK, JS
    MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09): : 502 - 507
  • [25] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134
  • [26] Min-max kalman filtering
    Yaesh, I
    Shaked, U
    SYSTEMS & CONTROL LETTERS, 2004, 53 (3-4) : 217 - 228
  • [27] On a min-max theorem of cacti
    Szigeti, Z
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 84 - 95
  • [28] BOUNDS FOR MIN-MAX HEAPS
    HASHAM, A
    SACK, JR
    BIT, 1987, 27 (03): : 315 - 323
  • [29] Analysis of min-max systems
    Olsder, GJ
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1996, 30 (01): : 17 - 30
  • [30] Generalized Min-Max classifier
    Rizzi, A
    Mascioli, FMF
    Martinelli, G
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 36 - 41