Explicit min-max polynomials on the disc

被引:0
|
作者
Moale, Ionela [1 ]
Peherstorfer, Franz [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Anal, Grp Dynam Syst & Approximat Theory, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
LEAST DEVIATION; APPROXIMATION; ZERO;
D O I
10.1016/j.jat.2011.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Pi(2)(n+m-1) := {Sigma(0 <= i+j <= n+m-1) c(i,j)x(i)y(j) : c(i,j) is an element of R} the space of polynomials of two variables with real coefficients of total degree less than or equal to n + m - 1. Let b(0), b(1), ... , b(l) is an element of R be given. For n, m is an element of N, n >= l + 1 we look for the polynomial b(0)x(n) y(m) + b(1)x(n-1) y(m+1) + ... + b(l)x(n-1) y(m+1) + q(x, y), q(x, y) is an element of Pi(2)(n+m-1), which has least maximum norm on the disc and call such a polynomial a min-max polynomial. First we introduce the polynomial 2P(n,m)(x, y) = xG(n-1,m)(x, y) + yG(n,m-1)(x, y) = 2x(n) y(m) + q(x, y) and q(x, y) is an element of Pi(2)(n+m-1), where G(n,m)(x, y) := 1/2(n+m) (U(n)(x)U(m)(y) + U(n-2)(x)U(m-2)(y)), and show that it is a min-max polynomial on the disc. Then we give a sufficient condition on the coefficients b(j), j = 0, ... , l, l fixed, such that for every n, m is an element of N, n >= l + 1, the linear combination Sigma(l)(nu=0) b(nu) P(n-nu,m+nu)(x, y) is a min-max polynomial. In fact the more general case, when the coefficients b(j) and l are allowed to depend on n and in. is considered. So far, up to very special cases, min-max polynomials are known only for x(n) y(m), n, m is an element of N(0). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:707 / 723
页数:17
相关论文
共 50 条
  • [1] An explicit class of min-max polynomials on the ball and on the sphere
    Moale, Ionela
    Peherstorfer, Franz
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (06) : 724 - 737
  • [2] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348
  • [3] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [4] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    [J]. Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [5] Application of an explicit min-max MPC to a scaled laboratory process
    de la Peña, DM
    Ramírez, DR
    Camacho, EF
    Alamo, T
    [J]. CONTROL ENGINEERING PRACTICE, 2005, 13 (12) : 1463 - 1471
  • [6] ON A MIN-MAX THEOREM
    CHEN FANGQI
    [J]. Applied Mathematics:A Journal of Chinese Universities, 1997, (03) : 43 - 48
  • [7] Min-Max Propagation
    Srinivasa, Christopher
    Givoni, Inmar
    Ravanbakhsh, Siamak
    Frey, Brendan J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [8] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [9] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [10] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438