Hierarchical Mahalanobis Distance Clustering Based Technique for Prognostics Applications Generating Big Data

被引:0
|
作者
Krishnan, R. [1 ]
Jagannathan, S. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65401 USA
关键词
D O I
10.1109/SSCI.2015.82
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Mahalanobis Distance (MD) based hierarchical clustering technique is proposed for prognostics in applications generating Big Data. This technique is shown to have the ability to overcome certain challenges concerning Big Data analysis. In this technique, Mahalanobis Taguchi Strategy (MTS) is utilized to generate MD values which are in turn organized into a tree. The hierarchical clustering approach is then applied to obtain an overall MD value which is trended over time for prediction. Simulation results are presented to demonstrate the efficiency of the proposed technique.
引用
收藏
页码:516 / 521
页数:6
相关论文
共 50 条
  • [1] Deep Learning Inspired Prognostics Scheme for Applications Generating Big Data
    Krishnan, R.
    Jagannathan, S.
    Samaranayake, V. A.
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3296 - 3302
  • [2] An Incremental Clustering Algorithm Based on Mahalanobis Distance
    Aik, Lim Eng
    Choon, Tan Wee
    [J]. INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 788 - 793
  • [3] Learning a Mahalanobis distance metric for data clustering and classification
    Xiang, Shiming
    Nie, Feiping
    Zhang, Changshui
    [J]. PATTERN RECOGNITION, 2008, 41 (12) : 3600 - 3612
  • [4] The Mahalanobis Distance for Functional Data With Applications to Classification
    Galeano, Pedro
    Joseph, Esdras
    Lillo, Rosa E.
    [J]. TECHNOMETRICS, 2015, 57 (02) : 281 - 291
  • [5] Hierarchical clustering of mixed data based on distance hierarchy
    Hsu, Chung-Chian
    Chen, Chin-Long
    Su, Yu-Wei
    [J]. INFORMATION SCIENCES, 2007, 177 (20) : 4474 - 4492
  • [6] Mahalanobis Distance Based K-Means Clustering
    Brown, Paul O.
    Chiang, Meng Ching
    Guo, Shiqing
    Jin, Yingzi
    Leung, Carson K.
    Murray, Evan L.
    Pazdor, Adam G. M.
    Cuzzocrea, Alfredo
    [J]. BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 256 - 262
  • [7] Mahalanobis distance based on fuzzy clustering algorithm for image segmentation
    Zhao, Xuemei
    Li, Yu
    Zhao, Quanhua
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 43 : 8 - 16
  • [8] An Approach to Online Fuzzy Clustering Based on the Mahalanobis Distance Measure
    Hu, Zhengbing
    Tyshchenko, Oleksii K.
    [J]. ADVANCES IN INTELLIGENT SYSTEMS, COMPUTER SCIENCE AND DIGITAL ECONOMICS, 2020, 1127 : 364 - 374
  • [9] A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data
    Andrea Martino
    Andrea Ghiglietti
    Francesca Ieva
    Anna Maria Paganoni
    [J]. Statistical Methods & Applications, 2019, 28 : 301 - 322
  • [10] A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data
    Martino, Andrea
    Ghiglietti, Andrea
    Ieva, Francesca
    Paganoni, Anna Maria
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02): : 301 - 322