The Mahalanobis Distance for Functional Data With Applications to Classification

被引:55
|
作者
Galeano, Pedro [1 ]
Joseph, Esdras [1 ]
Lillo, Rosa E. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist, Madrid, Spain
关键词
Functional principal components; Functional Mahalanobis semidistance; Functional data analysis; Classification methods; DISCRIMINANT-ANALYSIS;
D O I
10.1080/00401706.2014.902774
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 50 条
  • [1] Learning a Mahalanobis distance metric for data clustering and classification
    Xiang, Shiming
    Nie, Feiping
    Zhang, Changshui
    [J]. PATTERN RECOGNITION, 2008, 41 (12) : 3600 - 3612
  • [2] On mahalanobis distance in functional settings
    Berrendero, José R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. Journal of Machine Learning Research, 2020, 21
  • [3] On Mahalanobis Distance in Functional Settings
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [4] Classification with Kernel Mahalanobis Distance Classifiers
    Haasdonk, Bernard
    Pekalska, Elzbieta
    [J]. ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 351 - +
  • [5] Mahalanobis distance for multinomial data
    Puntanen, S
    Styan, GPH
    Subak-Sharpe, GE
    [J]. ECONOMETRIC THEORY, 1998, 14 (05) : 695 - 698
  • [6] A generalized Mahalanobis distance for mixed data
    de Leon, AR
    Carrière, KC
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (01) : 174 - 185
  • [7] Imbalance Data Classification Using Local Mahalanobis Distance Learning Based on Nearest Neighbor
    Siddappa N.G.
    Kampalappa T.
    [J]. SN Computer Science, 2020, 1 (2)
  • [8] Handling Imbalanced Data Classification Problem using Artificial Immune System with Mahalanobis Distance
    Jitkongchuen, Duangjai
    Sukpongthai, Warattha
    [J]. 2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 67 - 71
  • [9] Mahalanobis Distance Metric Learning Algorithm for Instance-based Data Stream Classification
    Rivero Perez, Jorge Luis
    Ribeiro, Bernardete
    Perez, Carlos Morell
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1857 - 1862
  • [10] Hierarchical Mahalanobis Distance Clustering Based Technique for Prognostics Applications Generating Big Data
    Krishnan, R.
    Jagannathan, S.
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 516 - 521