On the Forcing Dimension of a Graph

被引:0
|
作者
Abadi, Behrooz Bagheri Ghavam [1 ]
Zaghian, Ali [2 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Malek Ashtar Univ Technol, Dept Math & Cryptog, Esfahan, Iran
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2015年 / 58卷 / 02期
关键词
Resolving set; metric basis; forcing dimension; basis number; METRIC DIMENSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set W subset of V(G) is called a resolving set, if for each two distinct vertices u,v is an element of V(G) there exists w is an element of W such that d(u,w) not equal d(v, w), where d(x, y) is the distance between the vertices x and y. A resolving set for G with minimum cardinality is called a metric basis. The forcing dimension f (G, dim) (or f (G)) of G is the smallest cardinality of a subset S subset of V (G) such that there is a unique basis containing S. The forcing dimensions of some well-known graphs are determined. In this paper, among some other results, it is shown that for large enough integer n and all integers a, b with 0 <= a <= b < n and b >= 1, there exists a nontrivial connected graph G of order n with f(C) = a and dim(G) = b if {a, b} not equal {0,1}.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [21] CIRCULAR DIMENSION OF A GRAPH
    FEINBERG, RB
    DISCRETE MATHEMATICS, 1979, 25 (01) : 27 - 31
  • [22] DIMENSION OF A COMPARABILITY GRAPH
    TROTTER, WT
    MOORE, JI
    SUMNER, DP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) : 35 - 38
  • [23] The Rotational Dimension of a Graph
    Goering, Frank
    Helmberg, Christoph
    Wappler, Markus
    JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 283 - 302
  • [24] The lattice dimension of a graph
    Eppstein, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) : 585 - 592
  • [25] The Krausz dimension of a graph
    Beineke, LW
    Broere, I
    UTILITAS MATHEMATICA, 2006, 69 : 183 - 194
  • [26] The threshold dimension of a graph
    Mol, Lucas
    Murphy, Matthew J. H.
    Oellermann, Ortrud R.
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 118 - 133
  • [27] DIMENSION OF A COMPARABILITY GRAPH
    TROTTER, WT
    MOORE, JI
    SUMNER, DP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A32 - A32
  • [28] The partition dimension of a graph
    Chartrand G.
    Salehi E.
    Zhang P.
    aequationes mathematicae, 2000, 59 (1) : 45 - 54
  • [29] On the broadcast dimension of a graph
    Zhang, Emily
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 85 : 313 - 339
  • [30] The convex dimension of a graph
    Halman, Nir
    Onn, Shmuel
    Rothbjum, Uriel G.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) : 1373 - 1383