Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework

被引:0
|
作者
Zhao, Qiang [1 ]
Jin, Xin [1 ]
Yu, Huapeng [1 ]
Lu, Shan [2 ]
机构
[1] Liaoning Petrochem Univ, Sch Informat & Control Engn, Fushun 113001, Peoples R China
[2] Shenzhen Polytech, Inst Intelligence Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
partial least square; model predictive control; nonlinear system; offset-free control; PARTIAL LEAST-SQUARES; EFFICIENCY;
D O I
10.3390/pr9101784
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A nonlinear offset-free model predictive control based on a dynamic partial least square (PLS) framework is proposed in this paper. A multi-output multi-input system is projected into latent variable space by a PLS outer model. For each latent variable model, the T-S fuzzy model is used to describe the nonlinear characteristics of the system; while the state-space model is used in T-S fuzzy model consequent parameters to describe the dynamic characteristics. A disturbance model is introduced in the state-space model. For model state variables, a state observer is used to compensate for the mismatch of the model. The case study results for the pH neutralization process show that the MPC controller based on this method can guarantee the tracking performance of the nonlinear system without static error.</p>
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Data-driven model predictive control design for offset-free tracking of nonlinear systems
    Park, Byungjun
    Kim, Jong Woo
    Lee, Jong Min
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (06) : 1408 - 1423
  • [32] Robust offset-free nonlinear model predictive control for systems learned by neural nonlinear autoregressive exogenous models
    Xie, Jing
    Bonassi, Fabio
    Farina, Marcello
    Scattolini, Riccardo
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (16) : 9992 - 10009
  • [33] Offset-free Control of Constrained Linear Systems Using Model Predictive Control
    Aghaee, Shahram
    Zakeri, Yadollah
    Sheikholeslam, Farid
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 875 - +
  • [34] Offset-Free Model Predictive Control for Active Magnetic Bearing Systems
    Bonfitto, Angelo
    Molina, Luis Miguel Castellanos
    Tonoli, Andrea
    Amati, Nicola
    [J]. ACTUATORS, 2018, 7 (03)
  • [35] Adaptive Disturbance Estimation for Offset-Free SISO Model Predictive Control
    Huusom, Jakob Kjobsted
    Poulsen, Niels Kjolstad
    Jorgensen, Sten Bay
    Jorgensen, John Bagterp
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 2417 - 2422
  • [36] Homothetic tube-based robust offset-free economic Model Predictive Control
    Dong, Zihang
    Angeli, David
    [J]. AUTOMATICA, 2020, 119
  • [37] Offset-free explicit hybrid model predictive control of intravenous anaesthesia
    Nascu, Ioana
    Oberdieck, Richard
    Pistikopoulos, Efstratios N.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2475 - 2480
  • [38] Offset-free control of a pH system using Multiple Model Predictive Control
    Hermansson, A. W.
    Syafiie, S.
    [J]. 26TH REGIONAL SYMPOSIUM ON CHEMICAL ENGINEERING (RSCE 2019), 2020, 778
  • [39] Offset-Free Hybrid Model Predictive Control of Bispectral Index in Anesthesia
    Ingole, Deepak
    Drgona, Jan
    Kvasnica, Michal
    [J]. 2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2017, : 422 - 427
  • [40] New offset-free method for model predictive control of open channels
    Horvath, Klaudia
    Galvis, Eduard
    Gomez Valentin, Manuel
    Rodellar, Jose
    [J]. CONTROL ENGINEERING PRACTICE, 2015, 41 : 13 - 25