Multiple Kernel-Based SVM Classification of Hyperspectral Images by Combining Spectral, Spatial, and Semantic Information

被引:47
|
作者
Wang, Yi [1 ]
Yu, Wenke [1 ]
Fang, Zhice [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral images; classification; spectral-spatial; multiple kernels; semantic information; MULTINOMIAL LOGISTIC-REGRESSION; SEGMENTATION; EXTRACTION; FRAMEWORK;
D O I
10.3390/rs12010120
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we present a hyperspectral image classification method by combining spectral, spatial, and semantic information. The main steps of the proposed method are summarized as follows: First, principal component analysis transform is conducted on an original image to produce its extended morphological profile, Gabor features, and superpixel-based segmentation map. To model spatial information, the extended morphological profile and Gabor features are used to represent structure and texture features, respectively. Moreover, the mean filtering is performed within each superpixel to maintain the homogeneity of the spatial features. Then, the k-means clustering and the entropy rate superpixel segmentation are combined to produce semantic feature vectors by using a bag of visual-words model for each superpixel. Next, three kernel functions are constructed to describe the spectral, spatial, and semantic information, respectively. Finally, the composite kernel technique is used to fuse all the features into a multiple kernel function that is fed into a support vector machine classifier to produce a final classification map. Experiments demonstrate that the proposed method is superior to the most popular kernel-based classification methods in terms of both visual inspection and quantitative analysis, even if only very limited training samples are available.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Ideal Kernel-Based Multiple Kernel Learning for Spectral-Spatial Classification of Hyperspectral Image
    Gao, Wei
    Peng, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1051 - 1055
  • [2] A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images
    Wang, Yi
    Zhang, Yan
    Song, Haiwei
    REMOTE SENSING, 2016, 8 (11)
  • [3] Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information
    Wang, Yi
    Duan, Hexiang
    REMOTE SENSING, 2018, 10 (03):
  • [4] A spectral-spatial kernel-based method for hyperspectral imagery classification
    Li, Li
    Ge, Hongwei
    Gao, Jianqiang
    ADVANCES IN SPACE RESEARCH, 2017, 59 (04) : 954 - 967
  • [5] A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification
    Kuo, Bor-Chen
    Ho, Hsin-Hua
    Li, Cheng-Hsuan
    Hung, Chih-Cheng
    Taur, Jin-Shiuh
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) : 317 - 326
  • [6] Kernel-based Joint Spectral and Spatial Exploitation Using Hilbert Space Embedding for Hyperspectral Classification
    Gurram, Prudhvi
    Kwon, Heesung
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [7] A spatial-spectral kernel-based approach for the classification of remote-sensing images
    Fauvel, M.
    Chanussot, J.
    Benediktsson, J. A.
    PATTERN RECOGNITION, 2012, 45 (01) : 381 - 392
  • [8] Kernel-Based Linear Spectral Mixture Analysis for Hyperspectral Image Classification
    Liu, Keng-Hao
    Wong, Englin
    Chang, Chein-I
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 17 - 20
  • [9] FAULT TOLERANT UNSUPERVISED KERNEL-BASED INFORMATION CLUSTERING IN HYPERSPECTRAL IMAGES
    Malhotra, Akshay
    Shahid, Kazi Tanzeem
    Schizas, Ioannis D.
    Tjuatja, Saibun
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2191 - 2194
  • [10] Hyperspectral classification using an adaptive spectral-spatial kernel-based low-rank approximation
    Zhan, Tianming
    Sun, Le
    Xu, Yang
    Wan, Minghua
    Wu, Zebin
    Lu, Zhenyu
    Yang, Guowei
    REMOTE SENSING LETTERS, 2019, 10 (08) : 766 - 775