Hyperspectral classification using an adaptive spectral-spatial kernel-based low-rank approximation

被引:5
|
作者
Zhan, Tianming [1 ,2 ,3 ,4 ]
Sun, Le [5 ]
Xu, Yang [6 ]
Wan, Minghua [3 ,4 ]
Wu, Zebin [6 ]
Lu, Zhenyu [1 ,2 ]
Yang, Guowei [3 ,4 ,7 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Meteorol Observat & Informat Proc, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Audit Univ, Sch Informat & Technol, Nanjing, Jiangsu, Peoples R China
[4] Nanjing Audit Univ, Jiangsu Key Lab Auditing Informat Engn, Nanjing, Jiangsu, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China
[6] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[7] Qingdao Univ, Sch Comp & Elect Informat, Qingdao, Shandong, Peoples R China
关键词
REPRESENTATION;
D O I
10.1080/2150704X.2019.1607979
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper presents a novel adaptive spectral-spatial kernel-based low-rank approximation method for spectral-spatial hyperspectral image (HSI) classification. In the first of three steps of the proposed method, superpixel and image patch are used together to calculate the weights in the homogeneous region. Second, an adaptive spectral-spatial kernel is defined to capture the spectral and spatial feature of HSIs. In the final step, an adaptive spectral-spatial kernel and low-rank approximation are integrated into a decision model to perform HSI classification. Extensive experimental results on Indian Pines and Pavia University demonstrate the superiority of the proposed classifier when compared with other competing classifiers.
引用
收藏
页码:766 / 775
页数:10
相关论文
共 50 条
  • [1] Spectral-Spatial Classification of Hyperspectral Image Based on Low-Rank Decomposition
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2370 - 2380
  • [2] A spectral-spatial kernel-based method for hyperspectral imagery classification
    Li, Li
    Ge, Hongwei
    Gao, Jianqiang
    [J]. ADVANCES IN SPACE RESEARCH, 2017, 59 (04) : 954 - 967
  • [3] Ideal Kernel-Based Multiple Kernel Learning for Spectral-Spatial Classification of Hyperspectral Image
    Gao, Wei
    Peng, Yu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1051 - 1055
  • [4] Discriminative Low-Rank Gabor Filtering for Spectral-Spatial Hyperspectral Image Classification
    He, Lin
    Li, Jun
    Plaza, Antonio
    Li, Yuanqing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (03): : 1381 - 1395
  • [5] Multiscale Superpixel Kernel-Based Low-Rank Representation for Hyperspectral Image Classification
    Zhan, Tianming
    Lu, Zhenyu
    Wan, Minghua
    Yang, Guowei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1642 - 1646
  • [6] Hyperspectral Sparse Unmixing With Spectral-Spatial Low-Rank Constraint
    Li, Fan
    Zhang, Shaoquan
    Liang, Bingkun
    Deng, Chengzhi
    Xu, Chenguang
    Wang, Shengqian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6119 - 6130
  • [7] Hyperspectral Image Low-rank Restoration Based Spectral-spatial Total Variation
    Sun, Peipei
    Liu, Hongyi
    [J]. PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC 2017), 2017, : 129 - 132
  • [8] HYPERSPECTRAL CLASSIFICATION VIA LOW-RANK COMPONENT INDUCED SPATIAL-SPECTRAL KERNEL
    Sun, Le
    Yan, Fei
    Zhan, Tianming
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3005 - 3008
  • [9] Destriping hyperspectral imagery via spectral-spatial low-rank representation
    Wang, Yulong
    Zou, Cuiming
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (06)
  • [10] SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION VIA LOCALITY AND STRUCTURE CONSTRAINED LOW-RANK REPRESENTATION
    He, Xiang
    Wang, Qi
    Li, Xuelong
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5744 - 5747