Let 0 < p < z and 0 less than or equal to alpha < <beta> less than or equal to 2 pi. We prove that for trigonometric polynomials s(n) of degree less than or equal to n, we have integral (beta)(alpha) \s'(n)(theta)\(p)[\sin(0-alpha /2)\\sin(0-beta /2)\ + (beta-alpha /n)(2)](p:2) d theta less than or equal to cn(p) integral (beta)(alpha) \sn(theta)\(p) d theta. where c is independent of alpha, beta, n, s(n). The essential feature is the uniformity in alpha and beta of the estimate. The result may he viewed as an L-p form of Videnskii's inequalities. (C) 2001 Academic Press.
机构:
Normandie Univ, Lab Math INSA Rouen, Campus St Etienne Du Rouvray,Ave Univ,BP 8, F-76801 St Etienne Du Rouvray, FranceNormandie Univ, Lab Math INSA Rouen, Campus St Etienne Du Rouvray,Ave Univ,BP 8, F-76801 St Etienne Du Rouvray, France
Abbas, Lamia
Draux, Andre
论文数: 0引用数: 0
h-index: 0
机构:
Normandie Univ, Lab Math INSA Rouen, Campus St Etienne Du Rouvray,Ave Univ,BP 8, F-76801 St Etienne Du Rouvray, FranceNormandie Univ, Lab Math INSA Rouen, Campus St Etienne Du Rouvray,Ave Univ,BP 8, F-76801 St Etienne Du Rouvray, France
机构:
Univ Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
Dimitrov, Dimitar K.
Nikolov, Geno P.
论文数: 0引用数: 0
h-index: 0
机构:
Sofia Univ St Kliment Ohridski, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, BulgariaUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil