Lp Markov-Bernstein inequalities on arcs of the circle

被引:10
|
作者
Lubinsky, DS [1 ]
机构
[1] Univ Witwatersrand, Dept Math, ZA-2050 Wits, South Africa
关键词
D O I
10.1006/jath.2000.3502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < p < z and 0 less than or equal to alpha < <beta> less than or equal to 2 pi. We prove that for trigonometric polynomials s(n) of degree less than or equal to n, we have integral (beta)(alpha) \s'(n)(theta)\(p)[\sin(0-alpha /2)\\sin(0-beta /2)\ + (beta-alpha /n)(2)](p:2) d theta less than or equal to cn(p) integral (beta)(alpha) \sn(theta)\(p) d theta. where c is independent of alpha, beta, n, s(n). The essential feature is the uniformity in alpha and beta of the estimate. The result may he viewed as an L-p form of Videnskii's inequalities. (C) 2001 Academic Press.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条