Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells

被引:39
|
作者
Wang, Yuli [1 ]
Yin, Ying [2 ]
Jiang, Fei [1 ]
Chen, Ning [1 ]
机构
[1] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Med, Inst & Hosp Stomatol, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone formation; Co-culture; Human amnion mesenchymal stem cells; Human bone marrow mesenchymal stem cells; Osteoblasts; Osteogenesis; ALKALINE-PHOSPHATASE ACTIVITY; EXPRESSION; MEMBRANE; GROWTH;
D O I
10.1007/s10735-014-9600-5
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [41] Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells
    Nadia S. Mahmoud
    Hanaa H. Ahmed
    Mohamed R. Mohamed
    Khalda S. Amr
    Hadeer A. Aglan
    Mohamed A. M. Ali
    Mohamed A. Tantawy
    Cytotechnology, 2020, 72 : 1 - 22
  • [42] Characterization of neuronal differentiation of human bone marrow mesenchymal stem cells
    Wang, Wan-Chen
    Chung, Ting-Hao
    Su, Yu-Chieh
    Lee, Kuan-Der
    Leu, Yu-Wei
    Lee, Wen-Chien
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2009, 108 : S11 - S11
  • [43] Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells
    Talens-Visconti, Raquel
    Bonora, Ana
    Jover, Ramiro
    Mirabet, Vicente
    Carbonell, Francisco
    Castell, Jose Vicente
    Gomez-Lechon, Maria Jose
    WORLD JOURNAL OF GASTROENTEROLOGY, 2006, 12 (36) : 5834 - 5845
  • [44] In vitro expansion and osteogenic induction of human bone marrow mesenchymal stem cells
    Wang, Yong-Hong
    Wang, Chang-Yong
    Guo, Xi-Min
    Duan, Cui-Mi
    Zhao, Qiang
    Chen, Hui-Hua
    Zhongguo Shengwu Yixue Gongcheng Xuebao/Chinese Journal of Biomedical Engineering, 2002, 21 (03):
  • [45] Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells
    Raquel Taléns-Visconti
    Ana Bonora
    Ramiro Jover
    Vicente Mirabet
    Francisco Carbonell
    José Vicente Castell
    María José Gómez-Lechón
    World Journal of Gastroenterology, 2006, (36) : 5834 - 5845
  • [46] Pulsed Electromagnetic Fields Accelerate Proliferation and Osteogenic Gene Expression in Human Bone Marrow Mesenchymal Stem Cells During Osteogenic Differentiation
    Sun, Li-Yi
    Hsieh, Dean-Kuo
    Lin, Po-Cheng
    Chiu, Hsien-Tai
    Chiou, Tzyy-Wen
    BIOELECTROMAGNETICS, 2010, 31 (03) : 209 - 219
  • [47] Human umbilical cord mesenchymal stromal cells promotes the proliferation and osteogenic differentiation of autologous bone marrow stem cells by secreting exosomes
    Yao Hai
    Cao Zhidong
    Wu Wenyan
    BIOENGINEERED, 2022, 13 (04) : 9901 - 9915
  • [48] Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells
    Miao, Zongning
    Jin, Jun
    Chen, Lei
    Zhu, Jianzhong
    Huang, Wei
    Zhao, Jidong
    Qian, Hanguang
    Zhang, Xueguang
    CELL BIOLOGY INTERNATIONAL, 2006, 30 (09) : 681 - 687
  • [49] Effects of a surge of iron on the proliferation and differentiation of mesenchymal stem cells from human bone marrow
    Perrotta, S.
    Passaro, I
    Rossi, F.
    Di Feo, A.
    Di Pinto, D.
    Perrotta, A.
    Costantino, V
    Della Ragione, F.
    Locatelli, F.
    Nobili, B.
    Oliva, A.
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2007, 92 (06): : 38 - 39
  • [50] Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells
    Gong, ZD
    Wezeman, FH
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2004, 28 (03) : 468 - 479