Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach

被引:5
|
作者
You, Lu [1 ]
Qiu, Peihua [2 ]
机构
[1] Univ S Florida, Hlth Informat Inst, 3650 Spectrum Blvd, Tampa, FL 33612 USA
[2] Univ Florida, Dept Biostat, Tampa, FL USA
基金
美国国家科学基金会;
关键词
joint modeling; local kernel smoothing; longitudinal data; multiple outcomes; nonparametric mixed-effects model; survival data; LINEAR MIXED MODELS; SELECTION; REGRESSION; LIKELIHOOD; EM; LASSO;
D O I
10.1002/sim.9206
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many clinical studies, evaluating the association between longitudinal and survival outcomes is of primary concern. For analyzing data from such studies, joint modeling of longitudinal and survival data becomes an appealing approach. In some applications, there are multiple longitudinal outcomes whose longitudinal pattern is difficult to describe by a parametric form. For such applications, existing research on joint modeling is limited. In this article, we develop a novel joint modeling method to fill the gap. In the new method, a local polynomial mixed-effects model is used for describing the nonparametric longitudinal pattern of the multiple longitudinal outcomes. Two model estimation procedures, that is, the local EM algorithm and the local penalized quasi-likelihood estimation, are explored. Practical guidelines for choosing tuning parameters and for variable selection are provided. The new method is justified by some theoretical arguments and numerical studies.
引用
收藏
页码:6689 / 6706
页数:18
相关论文
共 50 条
  • [41] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    An-Min Tang
    Nian-Sheng Tang
    Dalei Yu
    Lifetime Data Analysis, 2023, 29 : 888 - 918
  • [42] Joint modelling of multivariate longitudinal data for mixed responses and survival in multiple sclerosis
    Ghosh, P.
    Neuhaus, A.
    Daumer, M.
    Basu, S.
    MULTIPLE SCLEROSIS, 2009, 15 (09): : S157 - S158
  • [43] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    Tang, An-Min
    Tang, Nian-Sheng
    Yu, Dalei
    LIFETIME DATA ANALYSIS, 2023, 29 (04) : 888 - 918
  • [44] Joint modeling of survival data and mismeasured longitudinal data using the proportional odds model
    Xiong, Juan
    He, Wenqing
    Yi, Grace Y.
    STATISTICS AND ITS INTERFACE, 2014, 7 (02) : 241 - 250
  • [45] Joint modelling of longitudinal binary data and survival data
    Hwang, Yi-Ting
    Huang, Chia-Hui
    Wang, Chun-Chao
    Lin, Tzu-Yin
    Tseng, Yi-Kuan
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2357 - 2371
  • [46] A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
    Kundu, Damitri
    Krishnan, Shekhar
    Gogoi, Manash Pratim
    Das, Kiranmoy
    LIFETIME DATA ANALYSIS, 2024, 30 (03) : 680 - 699
  • [47] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    Journal of Computational and Applied Mathematics, 2021, 381
  • [48] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [49] A robust joint modeling approach for longitudinal data with informative dropouts
    Zhang, Weiping
    Xie, Feiyue
    Tan, Jiaxin
    COMPUTATIONAL STATISTICS, 2020, 35 (04) : 1759 - 1783
  • [50] A robust joint modeling approach for longitudinal data with informative dropouts
    Weiping Zhang
    Feiyue Xie
    Jiaxin Tan
    Computational Statistics, 2020, 35 : 1759 - 1783