A note on upper and lower solutions for singular initial value problems

被引:0
|
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
D O I
10.1002/1099-1476(20010110)24:1<49::AID-MMA192>3.0.CO;2-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An upper and lower solution theory is presented for singular initial Value problems. Our non-linear term may be singular in both the independent and dependent variable. Existence will be established using Schauder's fixed point theorem and the Arzela-Ascoli theorem. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [31] Upper and Lower Solutions Method for a Class of Singular Fractional Boundary Value Problems with p-Laplacian Operator
    Wang, Jinhua
    Xiang, Hongjun
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [32] The method of lower and upper solutions for systems of boundary value problems
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (01) : 169 - 172
  • [33] Upper and lower solutions in quasilinear parabolic boundary value problems
    Marras, M
    Vernier-Piro, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (06): : 942 - 956
  • [34] Upper and lower solutions in quasilinear parabolic boundary value problems
    Monica Marras
    Stella Vernier-Piro
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 942 - 956
  • [35] Lower and Upper Solutions for Even Order Boundary Value Problems
    Cabada, Alberto
    Lopez-Somoza, Lucia
    MATHEMATICS, 2019, 7 (10)
  • [36] Mean value theorem for boundary value problems with given upper and lower solutions
    Sen, SK
    Agarwal, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (9-10) : 1499 - 1514
  • [37] Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
    Darzi, R.
    Mohammadzadeh, B.
    Neamaty, A.
    Baleanu, D.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [38] Upper and lower solutions method and a superlinear singular discrete boundary value problem
    Jiang, Daqing
    Pang, P. Y. H.
    Agarwal, Ravi P.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 743 - 753
  • [39] Existence of Positive Solutions to the Singular Initial Value Problems of Fractional Differential Equations
    Li, Qiuping
    Sun, Shurong
    Han, Zhenlai
    Zhao, Yige
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 563 - 569
  • [40] EXISTENCE OF SOLUTIONS TO FIRST-ORDER SINGULAR AND NONSINGULAR INITIAL VALUE PROBLEMS
    Kelevedjiev, Petio S.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,