GROUP RINGS SATISFYING NIL CLEAN PROPERTY

被引:3
|
作者
Eo, Sehoon [1 ]
Hwang, Seungjoo [1 ]
Yeo, Woongyeong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Korea Sci Acad, Busan 47162, South Korea
来源
关键词
Idempotent; nilpotent; nil clean; uniquely nil clean; group ring;
D O I
10.4134/CKMS.c190018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2013, Diesl defined a nil clean ring as a ring of which all elements can be expressed as the sum of an idempotent and a nilpotent. Furthermore, in 2017, Y. Zhou, S. Sahinkaya, G. Tang studied nil clean group rings, finding both necessary condition and sufficient condition for a group ring to be a nil clean ring. We have proposed a necessary and sufficient condition for a group ring to be a uniquely nil clean ring. Additionally, we provided theorems for general nil clean group rings, and some examples of trivial-center groups of which group ring is not nil clean over any strongly nil clean rings.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [31] On weakly nil-clean rings
    M. Tamer Koşan
    Yiqiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 949 - 955
  • [32] A Generalization of Strongly Nil Clean Rings
    Cui, Jian
    Yin, Xiaobin
    ALGEBRA COLLOQUIUM, 2018, 25 (04) : 585 - 594
  • [33] NIL RINGS SATISFYING CERTAIN CHAIN CONDITIONS - AN ADDENDUM
    HERSTEIN, IN
    SMALL, L
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (02): : 330 - &
  • [34] ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW TUP MONOID RINGS
    Hashemi, Ebrahim
    Yazdanfar, Marzieh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 57 - 71
  • [36] A multiplicative dual of nil-clean rings
    Zhou, Yiqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (01): : 39 - 43
  • [37] Strongly q-Nil-Clean Rings
    Abyzov, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (02) : 197 - 208
  • [38] Note on Strongly Nil Clean Elements in Rings
    Aleksandra Kostić
    Zoran Z. Petrović
    Zoran S. Pucanović
    Maja Roslavcev
    Czechoslovak Mathematical Journal, 2019, 69 : 87 - 92
  • [39] WEAK IDEMPOTENT NIL-CLEAN RINGS
    Asmare, B.
    Abebaw, T.
    Venkateswarlu, K.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (02):