Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI

被引:50
|
作者
Lee, Sang Ho [2 ,3 ]
Kim, Jong Hyo [1 ]
Cho, Nariya [4 ]
Park, Jeong Seon [4 ]
Yang, Zepa [5 ]
Jung, Yun Sub [6 ]
Moon, Woo Kyung [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul 110744, South Korea
[2] Seoul Natl Univ, Coll Med, Interdisciplinary Program Radiat Appl Life Sci, Seoul 110744, South Korea
[3] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul 110744, South Korea
[4] Seoul Natl Univ Hosp, Dept Radiol, Seoul 110744, South Korea
[5] Seoul Natl Univ, Coll Med, Dept Biomed Sci, Seoul 110744, South Korea
[6] Seoul Natl Univ, Coll Med, Interdisciplinary Program Radiat Appl Life Sci, Seoul 110744, South Korea
关键词
breast dynamic contrast-enhanced MRI; computer-aided diagnosis; spatiotemporal association; feature extraction; classification; 3D moment invariants; support vector machines; tumor characterization; AIDED-DIAGNOSIS CAD; HIGH FAMILIAL RISK; SPATIAL-RESOLUTION; NONRIGID REGISTRATION; CANCER; MAMMOGRAPHY; LESIONS; CLASSIFICATION; WOMEN; CURVES;
D O I
10.1118/1.3446799
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Analyzing spatiotemporal enhancement patterns is an important task for the differential diagnosis of breast tumors in dynamic contrast-enhanced MRI (DCE-MRI), and yet remains challenging because of complexities in analyzing the time-series of three-dimensional image data. The authors propose a novel approach to breast MRI computer-aided diagnosis (CAD) using a multi-level analysis of spatiotemporal association features for tumor enhancement patterns in DCE-MRI. Methods: A database of 171 cases consisting of 111 malignant and 60 benign tumors was used. Time-series contrast-enhanced MR images were obtained from two different types of MR scanners and protocols. The images were first registered for motion compensation, and then tumor regions were segmented using a fuzzy c-means clustering-based method. Spatiotemporal associations of tumor enhancement patterns were analyzed at three levels: Mapping of pixelwise kinetic features within a tumor, extraction of spatial association features from kinetic feature maps, and extraction of kinetic association features at the spatial feature level. A total of 84 initial features were extracted. Predictable values of these features were evaluated with an area under the ROC curve, and were compared between the spatiotemporal association features and a subset of simple form features which do not reflect spatiotemporal association. 'Several optimized feature sets were identified among the spatiotemporal association feature group or among the simple feature group based on a feature ranking criterion using a support vector machine based recursive feature elimination algorithm. A least-squares support vector machine (LS-SVM) classifier was used for tumor differentiation and the performances were evaluated using a leave-one-out testing. Results: Predictable values of the extracted single features ranged in 0.52-0.75. By applying multilevel analysis strategy, the spatiotemporal association features became more informative in predicting tumor malignancy, which was shown by a statistical testing in ten spatiotemporal association features. By using a LS-SVM classifier with the optimized second and third level feature set, the CAD scheme showed A(z) of 0.88 in classification of malignant and benign tumors. When this performance was compared to the same LS-SVM classifier with simple form features which do not reflect spatiotemporal association, there was a statistically significant difference (0.88 vs 0.79, p<0.05), suggesting that the multilevel analysis strategy yields a significant performance improvement. Conclusions: The results suggest that the multilevel analysis strategy characterizes the complex tumor enhancement patterns effectively with the spatiotemporal association features, which in turn leads to an improved tumor differentiation. The proposed CAD scheme has a potential for improving diagnostic performance in breast DCE-MRI. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3446799]
引用
收藏
页码:3940 / 3956
页数:17
相关论文
共 50 条
  • [31] Joint estimation of enhancement field sequence and deformation field of breast DCE-MRI
    Yu, Li-Ling
    Yang, Wei
    Lu, Zhen-Tai
    Feng, Qian-Jin
    Chen, Wu-Fan
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1509 - 1514
  • [32] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K. N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [33] Prediction of Histological Grade in Breast Cancer by Combining DCE-MRI and DWI Features
    Zhao, Wenrui
    Fan, Ming
    Xu, Maosheng
    Li, Lihua
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [34] DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response
    Kontopodis, E.
    Manikis, G. C.
    Skepasianos, I.
    Tzagkarakis, K.
    Nikiforaki, K.
    Papadakis, G. Z.
    Maris, T. G.
    Papadaki, E.
    Karantanas, A.
    Marias, K.
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 203 - 208
  • [35] Harmonization of radiomic features of breast lesions across international DCE-MRI datasets
    Whitney, Heather M.
    Li, Hui
    Ji, Yu
    Liu, Peifang
    Giger, Maryellen L.
    JOURNAL OF MEDICAL IMAGING, 2020, 7 (01)
  • [36] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K.N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    Expert Systems with Applications, 2024, 236
  • [37] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    TOMOGRAPHY, 2017, 3 (01) : 23 - 32
  • [38] A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI
    Yu, Ning
    Wu, Jia
    Weinstein, Susan P.
    Gaonkar, Bilwaj
    Keller, Brad M.
    Ashraf, Ahmed B.
    Jiang, YunQing
    Davatzikos, Christos
    Conant, Emily F.
    Kontos, Despina
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [39] Breast Lesion Characterization Using Kinetic Features Measured On Ultrafast DCE-MRI
    Pineda, F.
    Ren, Z.
    Kulkarni, K.
    Abe, H.
    Karczmar, G.
    MEDICAL PHYSICS, 2022, 49 (06) : E145 - E145
  • [40] Signal enhancement ratio (SER) quantified from breast DCE-MRI and breast cancer risk
    Wu, Shandong
    Kurland, Brenda F.
    Berg, Wendie A.
    Zuley, Margarita L.
    Jankowitz, Rachel C.
    Sumkin, Jules
    Gur, David
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414