Scanning SQUID microscopy in a cryogen-free dilution refrigerator

被引:11
|
作者
Low, D. [1 ]
Ferguson, G. M. [1 ]
Jarjour, Alexander [1 ]
Schaefer, Brian T. [1 ]
Bachmann, Maja D. [2 ,3 ]
Moll, Philip J. W. [4 ]
Nowack, Katja C. [1 ,5 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[2] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[3] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[4] Ecole Polytech Fed Lausanne EPFL, Inst Mat, Lab Quantum Mat QMAT, CH-1015 Lausanne, Switzerland
[5] Cornell Univ, Cornell Nanoscale Sci, Kavli Inst, Ithaca, NY 14853 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2021年 / 92卷 / 08期
基金
欧洲研究理事会;
关键词
SUPERCONDUCTIVITY; FERROMAGNETISM; MAGNETISM; CURRENTS;
D O I
10.1063/5.0047652
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report a scanning superconducting quantum interference device (SQUID) microscope in a cryogen-free dilution refrigerator with a base temperature at the sample stage of at least 30 mK. The microscope is rigidly mounted to the mixing chamber plate to optimize thermal anchoring of the sample. The microscope housing fits into the bore of a superconducting vector magnet, and our design accommodates a large number of wires connecting the sample and sensor. Through a combination of vibration isolation in the cryostat and a rigid microscope housing, we achieve relative vibrations between the SQUID and the sample that allow us to image with micrometer resolution over a 150 mu m range while the sample stage temperature remains at base temperature. To demonstrate the capabilities of our system, we show images acquired simultaneously of the static magnetic field, magnetic susceptibility, and magnetic fields produced by a current above a superconducting micrometer-scale device.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
    Guan, Xiang
    Fan, Jie
    Bian, Yong-Bo
    Cheng, Zhi-Gang
    Ji, Zhong-Qing
    CHINESE PHYSICS B, 2024, 33 (07)
  • [42] Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis
    Tanaka, K
    Odawara, A
    Nagata, A
    Ikeda, M
    Baba, Y
    Nakayama, S
    Chinone, K
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (02): : 737 - 739
  • [43] Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope
    Kasai, Jun
    Koyama, Tomoki
    Yokota, Munenori
    Iwaya, Katsuya
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (04):
  • [44] Cryogen-free superconducting magnet
    Hirose, Ryoichi
    Hayashi, Seiji
    Shibutani, Kazuyuki
    R and D Kobe Steel Eng Reps, 2007, 1 (27-31): : 27 - 31
  • [45] Cryogen-free operation of programmable Josephson voltage standard with a closed-cycle refrigerator
    Chong, Yonuk
    Kim, Mun-Seog
    Kim, Wan-Seop
    Kim, Kyu-Tae
    2008 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2008, : 586 - 587
  • [46] Alumina shunt for precooling a cryogen-free 4He or 3He refrigerator
    Uhlig, Kurt
    CRYOGENICS, 2016, 79 : 35 - 37
  • [47] Calorimetric realization of low-temperature fixed points using a cryogen-free refrigerator system
    Sakurai, H
    TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOL 7, PTS 1 AND 2, 2003, 684 : 969 - 974
  • [48] Cryogen-Free Superconducting and Hybrid Magnets
    K. Watanabe
    S. Awaji
    Journal of Low Temperature Physics, 2003, 133 : 17 - 30
  • [49] Supplier Launches cryogen-free magnet
    Glass Int, 2008, 6 (36):
  • [50] A 10 mK hermetic cell for eliminating parasitic heating in cryogen-free dilution refrigerators
    Schmoranzer, David
    Kumar, Sumit
    Triqueneaux, Sebastien
    Liu, Xiao
    Metcalf, Thomas
    Jernigan, Glenn
    Collin, Eddy
    Fefferman, Andrew
    CRYOGENICS, 2020, 110