Energy Harvesting Circuit for Road Speed Bumps Using a Piezoelectric Cantilever

被引:0
|
作者
Hyun, Ji Hoon [1 ]
Chen, Nan [2 ]
Ha, Dong Sam [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[2] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Peoples R China
关键词
Energy harvesting; speed bump; buck-boost converter; input voltage detector; impedance matching; sleep-mode;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an energy harvesting circuit for road speed bumps, in which energy is generated from passing over vehicles. As a speed bump energy harvester is mostly idle and generates energy intermittently for a short period, a major design issue is reduction of static power dissipation during the idle time. To address the problem, the proposed circuit adopts sleep mode. A speed bump energy harvester based on a piezoelectric cantilever translates kinetic energy generated by a passing over vehicle into electrical energy. Upon detection of the voltage generated by the piezoelectric cantilever, the proposed circuit wakes up the converter and extracts maximum power from the piezoelectric cantilever through impedance matching. When the piezoelectric cantilever does not generate voltage, i.e., a vehicle is not passing over the speed bump, the circuit shuts down major power hungry blocks to reduce the static power dissipation. The proposed circuit is designed in a 0.18 mu m CMOS technology. Simulation results indicate that the typical static power dissipation of the proposed circuit is only 443 pW for the vehicle speed of 20 km/h, while the power dissipation of the circuit without sleep mode is 16.3 mu W, an increase by a factor of 36,800 times.
引用
收藏
页码:4219 / 4223
页数:5
相关论文
共 50 条
  • [31] Parametric study of a thin piezoelectric cantilever for energy harvesting applications
    Hoang, T.
    Poulin-Vittrant, G.
    Ferin, G.
    Levassort, F.
    Bantignies, C.
    Nguyen-Dinh, A.
    Bavencoffe, M.
    ADVANCES IN APPLIED CERAMICS, 2018, 117 (04) : 231 - 236
  • [32] Modeling and Analysis of Piezoelectric Bimorph Cantilever for Vibration Energy Harvesting
    Gong, Junjie
    Xu, Yingying
    Ruan, Zhilin
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 2583 - 2588
  • [33] A MEMS Piezoelectric Cantilever Beam Array for Vibration Energy Harvesting
    Zhao, Xingqiang
    Wen, Zhiyu
    Deng, Licheng
    Luo, Guoxi
    Shang, Zhengguo
    Li, Dongling
    MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 : 1052 - 1057
  • [34] Design Optimization of Piezoelectric Energy Harvesting Cantilever for Medical Devices
    Saida, Mariem
    Zaibi, Ghada
    Samet, Mounir
    Kachouri, Abdennaceur
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2019, 15 (04) : 301 - 310
  • [35] Numerical investigations of bistable piezoelectric cantilever for enhanced energy harvesting
    Abdelnaby, M. A.
    Shiba, M. S.
    Ali, S.
    19TH INTERNATIONAL CONFERENCE ON APPLIED MECHANICS AND MECHANICAL ENGINEERING (AMME-19), 2020, 973
  • [36] Design and analysis of Slotted Cantilever Structure for Piezoelectric Energy Harvesting
    Asthana, Prateek
    Khanna, Gargi
    PROCEEDINGS OF 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K17), 2017, : 387 - 390
  • [37] Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting
    Ly, R.
    Rguiti, M.
    D'Astorg, S.
    Hajjaji, A.
    Courtois, C.
    Leriche, A.
    SENSORS AND ACTUATORS A-PHYSICAL, 2011, 168 (01) : 95 - 100
  • [38] Finite element analysis of a unimorph cantilever for piezoelectric energy harvesting
    Wang, Qingping
    Pei, Xuebing
    Wang, Qi
    Jiang, Shenglin
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2012, 40 (04) : 341 - 351
  • [39] Innovative Piezoelectric Cantilever Beam Shape for Improved Energy Harvesting
    Mehdipour, Iman
    Braghin, Francesco
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, AND ENERGY HARVESTING, VOL 9, 2015, : 19 - 24
  • [40] The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency
    Lin, Ji-Tzuoh
    Lee, Barclay
    Alphenaar, Bruce
    SMART MATERIALS AND STRUCTURES, 2010, 19 (04)