The small data solutions of general 3-D quasilinear wave equations. II
被引:14
|
作者:
Ding, Bingbing
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R China
Ding, Bingbing
[1
]
Witt, Ingo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, GermanyNanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R China
Witt, Ingo
[2
]
Yin, Huicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R China
Yin, Huicheng
[1
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Nanjing 210023, Jiangsu, Peoples R China
[2] Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
This paper is a continuation of the work in [8], where the authors established the global existence of 3 smooth small data solutions to the general 3-D quasilinear wave equation [GRAPHICS] when the weak null condition holds. In the present paper, we show that the smooth small data solutions of equations [GRAPHCS] will blow up in finite time when the weak null condition does not hold and a generic nondegenerate condition on the initial data is satisfied, moreover, a precise blowup time is completely determined. Therefore, collecting the main results in this paper and [8], we have given a basically complete study on the blowup or global existence of small data solutions to the 3-D quasilinear wave equation [GRAPHICS] . (C) 2016 Elsevier Inc. All rights reserved.
机构:
Univ Paris 07, Unite Format & Rech Math, F-75205 Paris 13, FranceUniv Paris 07, Unite Format & Rech Math, F-75205 Paris 13, France
Kuksin, Sergei
Nadirashvili, Nikolai
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, F-13453 Marseille, France
Univ Aix Marseille 1, Lab Anal Topol & Probabilites, F-13453 Marseille, FranceUniv Paris 07, Unite Format & Rech Math, F-75205 Paris 13, France