Automatically Selecting Inference Algorithms for Discrete Energy Minimisation

被引:0
|
作者
Henderson, Paul [1 ]
Ferrari, Vittorio [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
关键词
GRAPHICAL MODELS; MAP INFERENCE; DECOMPOSITION;
D O I
10.1007/978-3-319-46454-1_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Minimisation of discrete energies defined over factors is an important problem in computer vision, and a vast number of MAP inference algorithms have been proposed. Different inference algorithms per-form better on factor graph models (GMs) from different underlying problem classes, and in general it is difficult to know which algorithm will yield the lowest energy for a given GM. To mitigate this difficulty, survey papers [1-3] advise the practitioner on what algorithms perform well on what classes of models. We take the next step forward, and present a technique to automatically select the best inference algorithm for an input GM. We validate our method experimentally on an extended version of the OpenGM2 benchmark [3], containing a diverse set of vision problems. On average, our method selects an inference algorithm yielding labellings with 96% of variables the same as the best available algorithm.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 50 条
  • [21] Constrained Gibbs energy minimisation
    Koukkari, Pertti
    Pajarre, Risto
    Hack, Klaus
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2007, 98 (10) : 926 - 934
  • [22] Constrained Gibbs energy minimisation
    Koukkari, Pertti
    Pajarre, Risto
    Hack, Klaus
    Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2007, 98 (10): : 926 - 934
  • [23] An Empirical Framework for Automatically Selecting the Best Bayesian Classifier
    Moran, Stuart
    He, Yulan
    Liu, Kecheng
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 289 - +
  • [24] Automatically Selecting Answer Templates to Respond to Customer Emails
    Malik, Rahul
    Subramaniam, L. Venkata
    Kaushik, Saroj
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1659 - 1664
  • [25] Selecting Interesting Image Regions to Automatically Create Cinemagraphs
    Yeh, Mei-Chen
    IEEE MULTIMEDIA, 2016, 23 (01) : 72 - 81
  • [26] Automatically selecting a close mirror based on network topology
    Pultar, G
    PROCEEDINGS OF THE TWELFTH SYSTEMS ADMINISTRATION CONFERENCE (LISA XII), 1998, : 159 - 165
  • [27] Selecting Interesting Image Regions to Automatically Create Cinemagraphs
    Yeh M.-C.
    Yeh, Mei-Chen (myeh@csie.ntnu.edu.tw), 1600, IEEE Computer Society (23): : 72 - 81
  • [28] A Tool for Automatically Selecting Optimal Model Transformation Chains
    Basciani, Francesco
    Di Ruscio, Davide
    D'Emidio, Mattia
    Frigioni, Daniele
    Pierantonio, Alfonso
    Iovino, Ludovico
    21ST ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS: COMPANION PROCEEDINGS (MODELS-COMPANION '18), 2018, : 2 - 6
  • [29] The Perfect Match: Selecting Approximate Multipliers for Energy-Efficient Neural Network Inference
    Spantidi, Ourania
    Anagnostopoulos, Iraklis
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [30] A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems
    Kappes, Joerg H.
    Andres, Bjoern
    Hamprecht, Fred A.
    Schnoerr, Christoph
    Nowozin, Sebastian
    Batra, Dhruv
    Kim, Sungwoong
    Kausler, Bernhard X.
    Lellmann, Jan
    Komodakis, Nikos
    Rother, Carsten
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1328 - 1335