Automatically Selecting Inference Algorithms for Discrete Energy Minimisation

被引:0
|
作者
Henderson, Paul [1 ]
Ferrari, Vittorio [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
关键词
GRAPHICAL MODELS; MAP INFERENCE; DECOMPOSITION;
D O I
10.1007/978-3-319-46454-1_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Minimisation of discrete energies defined over factors is an important problem in computer vision, and a vast number of MAP inference algorithms have been proposed. Different inference algorithms per-form better on factor graph models (GMs) from different underlying problem classes, and in general it is difficult to know which algorithm will yield the lowest energy for a given GM. To mitigate this difficulty, survey papers [1-3] advise the practitioner on what algorithms perform well on what classes of models. We take the next step forward, and present a technique to automatically select the best inference algorithm for an input GM. We validate our method experimentally on an extended version of the OpenGM2 benchmark [3], containing a diverse set of vision problems. On average, our method selects an inference algorithm yielding labellings with 96% of variables the same as the best available algorithm.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 50 条
  • [1] Intelligent system of selecting key search algorithms automatically
    Fuketa, M
    Morita, K
    Shishibori, M
    Aoe, J
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 642 - 647
  • [2] Towards a Method for Automatically Selecting and Configuring Multi-Label Classification Algorithms
    de Sa, Alex G. C.
    Pappa, Gisele L.
    Freitas, Alex A.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1125 - 1132
  • [3] Dynamic Hybrid Algorithms for MAP Inference in Discrete MRFs
    Alahari, Karteek
    Kohli, Pushmeet
    Torr, Philip H. S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) : 1846 - 1857
  • [4] SELECTING THE MAXIMUM MINIMUM AUTOMATICALLY
    GUO, YQ
    ELECTRONIC ENGINEERING, 1990, 62 (757): : 34 - &
  • [5] MINIMISATION OF DISTANCE IN PLACEMENT ALGORITHMS
    LODATO, VA
    COMPUTER JOURNAL, 1971, 14 (03): : 260 - &
  • [6] The inference error minimisation approach to fuzzy inference and knowledge analysis
    Sala, A
    Albertos, P
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 92 - 97
  • [7] SELECTING A CATEGORY FOR AUTOMATICALLY RECORDING MICROPARTICLES
    SOBOLEV, AL
    OVODOVA, AV
    SURAKOV, AI
    INDUSTRIAL LABORATORY, 1968, 34 (11): : 1606 - &
  • [8] Automatically Selecting Striking Images for Social Cards
    Jones, Shawn M.
    Weigle, Michele C.
    Klein, Martin
    Nelson, Michael L.
    PROCEEDINGS OF THE 13TH ACM WEB SCIENCE CONFERENCE, WEBSCI 2021, 2020, : 36 - 45
  • [9] Models, techniques, and algorithms for finding, selecting, and displaying patterns in strings and other discrete objects
    Mehta, DP
    Sahni, S
    JOURNAL OF SYSTEMS AND SOFTWARE, 1997, 39 (03) : 201 - 221
  • [10] Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
    Wu, Yi
    Srivastava, Siddharth
    Hay, Nicholas
    Du, Simon S.
    Russell, Stuart
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80