Second-Harmonic Scattering as a Probe of Structural Correlations in Liquids

被引:27
|
作者
Tocci, Gabriele [1 ,2 ,3 ,4 ]
Liang, Chungwen [1 ,2 ,3 ,4 ]
Wilkins, David M. [1 ,2 ,3 ,4 ]
Roke, Sylvie [1 ,2 ,3 ]
Ceriottit, Michele [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, Inst Bioengn, Lab Fundamental BioPhoton, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Sch Engn, Inst Mat Sci & Engn, Lab Fundamental BioPhoton, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Lausanne Ctr Ultrafast Sci, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Lab Computat Sci & Modeling, Inst Mat, CH-1015 Lausanne, Switzerland
来源
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
NONLINEAR LIGHT-SCATTERING; HYPER-RAYLEIGH-SCATTERING; MOLECULAR-MECHANICS METHODS; CONDENSED PHASES; AB-INITIO; WATER; HYPERPOLARIZABILITIES; NANOPARTICLES; POLARIZATION; SPECTROSCOPY;
D O I
10.1021/acs.jpclett.6b01851
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Second-harmonic scattering experiments of water and other bulk molecular liquids have long been assumed to be insensitive to interactions between the molecules. The measured intensity is generally thought to arise from incoherent scattering due to individual molecules. We introduce a method to compute the second-harmonic scattering pattern of molecular liquids directly from atomistic computer simulations, which takes into account the coherent terms. We apply this approach to large-scale molecular dynamics simulations of liquid water, where we show that nanosecond second harmonic scattering experiments contain a coherent contribution arising from radial and angular correlations on a length scale of less than or similar to 1 nm, much shorter than had been recently hypothesized (Shelton, D. P. J. Chem. Phys. 2014, 141). By combining structural correlations from simulations with experimental data (Shelton, D. P. J. Chem. Phys. 2014, 141), we can also extract an effective molecular hyperpolarizability in the liquid phase. This work demonstrates that second-harmonic scattering experiments and atomistic simulations can be used in synergy to investigate the structure of complex liquids, solutions, and biomembranes, including the intrinsic intermolecular correlations.
引用
收藏
页码:4311 / 4316
页数:6
相关论文
共 50 条
  • [31] Second-harmonic edges
    David Pile
    Nature Photonics, 2014, 8 (7) : 499 - 499
  • [32] Second-harmonic control
    Oliver Graydon
    Nature Photonics, 2016, 10 (12) : 751 - 751
  • [33] Second-harmonic nanoprobes
    Noriaki Horiuchi
    Nature Photonics, 2011, 5 : 7 - 7
  • [34] Optical second-harmonic probe for silicon millimeter-wave circuits
    Rheinisch-Westfaelische Technische, Hochschule, Aachen, Germany
    Appl Phys Lett, 12 (1699-1701):
  • [35] Optical second-harmonic probe for silicon millimeter-wave circuits
    Ohlhoff, C
    Meyer, C
    Lupke, G
    Loffler, T
    Pfeifer, T
    Roskos, HG
    Kurz, H
    APPLIED PHYSICS LETTERS, 1996, 68 (12) : 1699 - 1701
  • [36] Structural Designs and Property Characterizations for Second-Harmonic Generation Materials
    Cheng, Wen-Dan
    Lin, Chen-Sheng
    Zhang, Wei-Long
    Zhang, Hao
    STRUCTURE-PROPERTY RELATIONSHIPS IN NON-LINEAR OPTICAL CRYSTALS I: THE UV-VIS REGION, 2012, 144 : 1 - 41
  • [37] Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering
    Geren, K.
    Liu, S. W.
    Zhou, H. J.
    Zhang, Y.
    Tian, R.
    Xiao, Min
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
  • [38] Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids
    Rocha-Mendoza, Israel
    Camacho-Lopez, Santiago
    Luna-Palacios, Yryx Y.
    Esqueda-Barron, Yasmin
    Camacho-Lopez, Miguel A.
    Camacho-Lopez, Marco
    Aguilar, Guillermo
    OPTICS AND LASER TECHNOLOGY, 2018, 99 : 118 - 123
  • [39] Nonlinear Mie theory for second-harmonic and sum-frequency scattering
    de Beer, Alex G. F.
    Roke, Sylvie
    PHYSICAL REVIEW B, 2009, 79 (15)
  • [40] Experimental study of optical second-harmonic scattering from spherical nanoparticles
    Shan, J
    Dadap, JI
    Stiopkin, I
    Reider, GA
    Heinz, TF
    PHYSICAL REVIEW A, 2006, 73 (02):