Misfolding of the cystic fibrosis transmembrane conductance regulator and disease

被引:54
|
作者
Cheung, Joanne C. [1 ,2 ]
Deber, Charles M. [1 ,2 ]
机构
[1] Hosp Sick Children, Res Inst, Div Mol Struct & Funct, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1021/bi702209s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator(CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.
引用
收藏
页码:1465 / 1473
页数:9
相关论文
共 50 条
  • [21] Structure and function of the cystic fibrosis transmembrane conductance regulator
    Morales, MM
    Capella, MAM
    Lopes, AG
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 1999, 32 (08) : 1021 - 1028
  • [23] The Extrapulmonary Effects of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis
    Sergeev, Valentine
    Chou, Frank Y.
    Lam, Grace Y.
    Hamilton, Christopher Michael
    Wilcox, Pearce G.
    Quon, Bradley S.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2020, 17 (02) : 147 - 154
  • [24] THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR GENE
    TSUI, LC
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1995, 151 (03) : S47 - S53
  • [25] Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate
    Abraham, EH
    Okunieff, P
    Scala, S
    Vos, P
    Oosterveld, MJS
    Chen, AY
    Shrivastav, B
    Guidotti, G
    SCIENCE, 1997, 275 (5304) : 1324 - 1325
  • [26] PHOSPHORYLATION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR
    PICCIOTTO, MR
    COHN, JA
    BERTUZZI, G
    GREENGARD, P
    NAIRN, AC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1992, 267 (18) : 12742 - 12752
  • [27] A transistor model for the cystic fibrosis transmembrane conductance regulator
    Hunt, William D.
    Mccarty, Nael A.
    Marin, Eduardo Martinez
    Westafer, Ryan S.
    Yamin, Phillip R.
    Cui, Guiying
    Eckford, Andrew W.
    Denison, Douglas R.
    BIOPHYSICAL REPORTS, 2023, 3 (02):
  • [28] Pharmacology of CFTR (cystic fibrosis transmembrane conductance regulator)
    Cuthbert, A. W.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2004, 18 : 22 - 22
  • [29] ATPase activity of the cystic fibrosis transmembrane conductance regulator
    Li, CH
    Ramjeesingh, M
    Wang, W
    Garami, E
    Hewryk, M
    Lee, D
    Rommens, JM
    Galley, K
    Bear, CE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) : 28463 - 28468
  • [30] Targeted Activation of Cystic Fibrosis Transmembrane Conductance Regulator
    Villamizar, Olga
    Waters, Shafagh A.
    Scott, Tristan
    Saayman, Sheena
    Grepo, Nicole
    Urak, Ryan
    Davis, Alicia
    Jaffe, Adam
    Morris, Kevin V.
    MOLECULAR THERAPY, 2019, 27 (10) : 1737 - 1748