Sleep apnea detection from ECG using variational mode decomposition

被引:15
|
作者
Sharma, Hemant [1 ]
Sharma, K. K. [2 ]
机构
[1] Natl Inst Technol Rourkela, Dept Elect & Commun Engn, Rourkela 769008, India
[2] Malaviya Natl Inst Technol Jaipur, Dept Elect & Commun Engn, Jaipur 302017, Rajasthan, India
关键词
ECG; hermite decomposition; sleep apnea; entropy; SVM; HEART-RATE-VARIABILITY; RESPIRATORY MOVEMENT; ENTROPY; CLASSIFICATION; ALGORITHMS; FEATURES; SIGNALS; ELECTROCARDIOGRAM;
D O I
10.1088/2057-1976/ab68e9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Sleep apnea is a pervasive breathing problem during night sleep, and its repetitive occurrence causes various health problems. Polysomnography is commonly used for apnea screening which is an expensive, time-consuming, and complex process. In this paper, a simple but efficient technique based on the variational mode decomposition (VMD) for automated detection of sleep apnea from single-lead ECG is proposed. The heart rate variability and ECG-derived respiration signals obtained from ECG are decomposed into different modes using the VMD, and these modes are used for extracting different features including spectral entropies, interquartile range, and energy. The principal component analysis is employed to reduce the dimension of the feature vector. The experiments are conducted using the Apnea-ECG dataset, and the classification performance of various classifiers is investigated. In per-segment classification, an accuracy of about 87.5% (Sens: 84.9%, Spec: 88.2%) is achieved using the K-nearest neighbor classifier. In per-recording classification, the proposed technique using the linear discriminant analysis model outperformed the existing apnea detection approaches by achieving the accuracy of 100%. The algorithm also provided the best agreement between the estimated and reference apnea-hypopnea index (AHI) values. These results show that the algorithm has the potential to be used for home-based apnea screening systems.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] AUTOMATIC DETECTION OF ECG WAVE BOUNDARIES USING EMPIRICAL MODE DECOMPOSITION
    Arafat, Md. Abdullah
    Hasan, Md. Kamrul
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 461 - 464
  • [42] Empirical Mode Decomposition vs. Variational Mode Decomposition on ECG Signal Processing: A Comparative Study
    Maji, Uday
    Pal, Saurabh
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1129 - 1134
  • [43] Harmonic Detection for Power Grids Using Adaptive Variational Mode Decomposition
    Cai, Guowei
    Wang, Lixin
    Yang, Deyou
    Sun, Zhenglong
    Wang, Bo
    ENERGIES, 2019, 12 (02)
  • [44] Air Void Detection Using Variational Mode Decomposition With Low Rank
    Tivive, Fok Hing Chi
    Bouzerdoum, Abdesselam
    Karekal, Shivakumar
    IEEE SENSORS JOURNAL, 2020, 20 (05) : 2600 - 2607
  • [45] Detection of Parkinson Disease using Variational Mode Decomposition of Speech Signal
    Karan, Biswajit
    Mahto, Kartik
    Sahu, Sitanshu Sekhar
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 508 - 512
  • [46] Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks
    Xiaowei Wang
    Maowei Cheng
    Yefu Wang
    Shaohui Liu
    Zhihong Tian
    Feng Jiang
    Hongjun Zhang
    Multimedia Tools and Applications, 2020, 79 : 15813 - 15827
  • [47] Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks
    Wang, Xiaowei
    Cheng, Maowei
    Wang, Yefu
    Liu, Shaohui
    Tian, Zhihong
    Jiang, Feng
    Zhang, Hongjun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (23-24) : 15813 - 15827
  • [48] Sleep Apnea Detection from Single-Lead ECG Using Features Based on ECG-Derived Respiration (EDR) Signals
    Janbakhshi, P.
    Shamsollahi, M. B.
    IRBM, 2018, 39 (03) : 206 - 218
  • [49] Sleep Apnea Detection Using a Feed-Forward Neural Network on ECG Signal
    da Silva Pinho, Andre Miguel
    Pombo, Nuno
    Garcia, Nuno M.
    2016 IEEE 18TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2016, : 277 - 282
  • [50] ECG Signal Analysis Based on Variational Mode Decomposition and Bandwidth Property
    Mert, Ahmet
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1205 - 1208