EXISTENCE AND UNIQUENESS OF MINIMAL BLOW-UP SOLUTIONS TO AN INHOMOGENEOUS MASS CRITICAL NLS

被引:86
|
作者
Raphael, Pierre [1 ]
Szeftel, Jeremie [2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
[2] Ecole Normale Super, Dept Math Applicat, F-75005 Paris, France
关键词
NONLINEAR SCHRODINGER-EQUATION; SOLITARY WAVES; PLANE DOMAIN; STABILITY; NONEXISTENCE; PRINCIPLE; DYNAMICS; PROFILE;
D O I
10.1090/S0894-0347-2010-00688-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:471 / 546
页数:76
相关论文
共 50 条
  • [41] Global Existence and Blow-up Solutions for a Parabolic Equation with Critical Nonlocal Interactions
    Zhang, Jian
    Radulescu, Vicentiu D.
    Yang, Minbo
    Zhou, Jiazheng
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023,
  • [42] Local Existence and Blow-up Criterion of the Inhomogeneous Euler Equations
    D. Chae
    J. Lee
    [J]. Journal of Mathematical Fluid Mechanics, 2003, 5 : 144 - 165
  • [43] Blow-up solutions of inhomogeneous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (02) : 137 - 169
  • [44] Local Existence and Blow-up Criterion of the Inhomogeneous Euler Equations
    Chae, Dongho
    Lee, Jihoon
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (02) : 144 - 165
  • [45] Minimal blow-up masses and existence of solutions for an asymmetric sinh-Poisson equation
    Ricciardi, Tonia
    Zecca, Gabriella
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2375 - 2387
  • [46] Blow-up for the pointwise NLS in dimension two: Absence of critical power
    Adami, Riccardo
    Carlone, Raffaele
    Correggi, Michele
    Tentarelli, Lorenzo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) : 1 - 37
  • [47] On the minimal mass blow-up solutions for the nonlinear Schrodinger equation with Hardy potential
    Pan, Jingjing
    Zhang, Jian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [48] Blow-up solutions with minimal mass for nonlinear Schrodinger equation with variable potential
    Pan, Jingjing
    Zhang, Jian
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 58 - 71
  • [49] Existence, uniqueness and blow-up of solutions for generalized auto-convolution Volterra integral equations
    Mostafazadeh, Mahdi
    Shahmorad, Sedaghat
    Erdogan, Fevzi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 471
  • [50] On local existence, uniqueness and blow-up of solutions for the generalized MHD equations in Lei–Lin spaces
    Wilberclay G. Melo
    Cilon Perusato
    Natã Firmino Rocha
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70