VESUNETDeep: A Fully Convolutional Deep Learning Architecture for Automated Vessel Segmentation

被引:1
|
作者
Atli, Ibrahim [1 ]
Gedik, O. Serdar [1 ]
机构
[1] Ankara Yildmm Beyazit Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey
关键词
vessel segmentation; fully convolutional; deep learning; NETWORK;
D O I
10.1109/siu.2019.8806597
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation of blood vessels has a lot attention in medical image processing because of its use in the diagnosis of diseases. Although manual segmentation is possible for each patient, it is a laborious and repetitive task which requires professional skills. Thus, many methods have been proposed in the literature, from hand-designed filters to learning-based approaches and machine learning-based approaches outperform hand-designed filters. In this study, we propose an automated, fast and robust deep learning architecture for improving the performance of vessel segmentation. The segmentation performance is compared with the methods in the literature in terms of accuracy, sensitivity, specificity and area under curve (AUC) metrics. Moreover, the proposed deep learning architecture, VESUNETDeep, is tested with and without pre-processing of the input signal. It has been found that the pre-processing step increases sensitivity but decreases a small amount of other metrics. Finally, VESUNETDeep architecture is superior in terms of accuracy, specificity and AUC metrics.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation
    Atli, Ibrahim
    Gedik, Osman Serdar
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2021, 24 (02): : 271 - 283
  • [2] Attention aware fully convolutional deep learning model for retinal blood vessel segmentation
    Gobinath, C.
    Gopinath, M. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6413 - 6423
  • [3] Architecture and Factor Design of Fully Convolutional Neural Networks for Retinal Vessel Segmentation
    Cai, Zhuotong
    Xin, Jingmin
    Liu, Sijie
    Wu, Jiayi
    Zheng, Nanning
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3076 - 3080
  • [4] Fully-Automated Left Ventricle Segmentation Using a Dilated and Adversarial Deep Learning Architecture
    Yao, Heming
    Gryak, Jonathan
    Derksen, Harm
    Attili, Anil K.
    Nallamothu, Brahmajee K.
    Najarian, Kayvan
    CIRCULATION, 2018, 138
  • [5] Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully Convolutional Networks
    Yuan, Shaofeng
    Yang, Feng
    arXiv, 2023,
  • [6] Retinal blood vessel segmentation using fully convolutional network with transfer learning
    Jiang, Zhexin
    Zhang, Hao
    Wang, Yi
    Ko, Seok-Bum
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 68 : 1 - 15
  • [7] A Fully Automated Deep Learning Network for Brain Tumor Segmentation
    Yogananda, Chandan Ganesh Bangalore
    Shah, Bhavya R.
    Vejdani-Jahromi, Maryam
    Nalawade, Sahil S.
    Murugesan, Gowtham K.
    Yu, Frank F.
    Pinho, Marco C.
    Wagner, Benjamin C.
    Emblem, Kyrre E.
    Bjornerud, Atle
    Fei, Baowei
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    TOMOGRAPHY, 2020, 6 (02) : 186 - 193
  • [8] Fully automated esophagus segmentation with a hierarchical deep learning approach
    Trullo, Roger
    Petitjean, Caroline
    Nie, Dong
    Shen, Dinggang
    Ruan, Su
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 503 - 506
  • [9] Deep learning for the fully automated segmentation of the inner ear on MRI
    Akshayaa Vaidyanathan
    Marly F. J. A. van der Lubbe
    Ralph T. H. Leijenaar
    Marc van Hoof
    Fadila Zerka
    Benjamin Miraglio
    Sergey Primakov
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek
    Hammer Sebastiaan
    Patrick F. M. Dammeijer
    Vincent van Rompaey
    Henry C. Woodruff
    Wim Vos
    Seán Walsh
    Raymond van de Berg
    Philippe Lambin
    Scientific Reports, 11
  • [10] Deep learning for the fully automated segmentation of the inner ear on MRI
    Vaidyanathan, Akshayaa
    van der Lubbe, Marly F. J. A.
    Leijenaar, Ralph T. H.
    van Hoof, Marc
    Zerka, Fadila
    Miraglio, Benjamin
    Primakov, Sergey
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek, Monique A. L.
    Sebastiaan, Hammer
    Dammeijer, Patrick F. M.
    van Rompaey, Vincent
    Woodruff, Henry C.
    Vos, Wim
    Walsh, Sean
    van de Berg, Raymond
    Lambin, Philippe
    SCIENTIFIC REPORTS, 2021, 11 (01)