Fair and Secure Multi-Party Computation with Cheater Detection

被引:1
|
作者
Seo, Minhye [1 ]
机构
[1] Duksung Womens Univ, Dept Cyber Secur, Seoul 01369, South Korea
基金
新加坡国家研究基金会;
关键词
secure multi-party computation; cheater detection; universal composability; fairness; smart grid; SECRET SHARING SCHEMES; IDENTIFICATION; PROTOCOL;
D O I
10.3390/cryptography5030019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Secure multi-party computation (SMC) is a cryptographic protocol that allows participants to compute the desired output without revealing their inputs. A variety of results related to increasing the efficiency of SMC protocol have been reported, and thus, SMC can be used in various applications. With the SMC protocol in smart grids, it becomes possible to obtain information for load balancing and various statistics, without revealing sensitive user information. To prevent malicious users from tampering with input values, SMC requires cheater detection. Several studies have been conducted on SMC with cheater detection, but none of these has been able to guarantee the fairness of the protocol. In such cases, only a malicious user can obtain a correct output prior to detection. This can be a critical problem if the result of the computation is real-time information of considerable economic value. In this paper, we propose a fair and secure multi-party computation protocol, which detects malicious parties participating in the protocol before computing the final output and prevents them from obtaining it. The security of our protocol is proven in the universal composability framework. Furthermore, we develop an enhanced version of the protocol that is more efficient when computing an average after detecting cheaters. We apply the proposed protocols to a smart grid as an application and analyze their efficiency in terms of computational cost.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] MULTI-PARTY SECURE COMPUTATION OF MULTI-VARIABLE POLYNOMIALS
    Kosolapov, Yu. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2023, 16 (01): : 81 - 95
  • [22] Application of Secure Multi-party Computation in Linear Programming
    Fu Zu-feng
    Wang Hai-ying
    Wu Yong-wu
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 244 - 248
  • [23] Rational protocol of quantum secure multi-party computation
    Zhao Dou
    Gang Xu
    Xiu-Bo Chen
    Xin-Xin Niu
    Yi-Xian Yang
    Quantum Information Processing, 2018, 17
  • [24] Secure multi-party computation protocol for sequencing problem
    ChunMing Tang
    GuiHua Shi
    ZhengAn Yao
    Science China Information Sciences, 2011, 54 : 1654 - 1662
  • [25] Round-Optimal Secure Multi-party Computation
    Shai Halevi
    Carmit Hazay
    Antigoni Polychroniadou
    Muthuramakrishnan Venkitasubramaniam
    Journal of Cryptology, 2021, 34
  • [26] Minimal Complete Primitives for Secure Multi-Party Computation
    Matthias Fitzi
    Juan A. Garay
    Ueli Maurer
    Rafail Ostrovsky
    Journal of Cryptology, 2005, 18 : 37 - 61
  • [27] Rational protocol of quantum secure multi-party computation
    Dou, Zhao
    Xu, Gang
    Chen, Xiu-Bo
    Niu, Xin-Xin
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [28] Secure Multi-party Quantum Computation with a Dishonest Majority
    Dulek, Yfke
    Grilo, Alex B.
    Jeffery, Stacey
    Majenz, Christian
    Schaffner, Christian
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 729 - 758
  • [29] Minimal complete primitives for secure multi-party computation
    Fitzi, M
    Garay, JA
    Maurer, U
    Ostrovsky, R
    JOURNAL OF CRYPTOLOGY, 2005, 18 (01) : 37 - 61
  • [30] Secure Multi-Party Computation for Machine Learning: A Survey
    Zhou, Ian
    Tofigh, Farzad
    Piccardi, Massimo
    Abolhasan, Mehran
    Franklin, Daniel
    Lipman, Justin
    IEEE ACCESS, 2024, 12 : 53881 - 53899