共 44 条
Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution
被引:0
|作者:
Naser, B.
Ferry, D. K.
Heeren, J.
Reno, J. L.
Bird, J. P.
[1
]
机构:
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Gen Dynam C4 Syst, Scottsdale, AZ 85257 USA
[4] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[5] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA
来源:
关键词:
quantum point contact;
non-linear transport;
transient conductance;
D O I:
10.1016/j.physe.2007.05.013
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 91
页数:8
相关论文