Impute vs. Ignore: Missing Values for Prediction

被引:0
|
作者
Zhang, Qianyu [1 ]
Rahman, Ashfaqur [1 ]
D'Este, Claire [1 ]
机构
[1] CSIRO, Intelligent Sensing & Syst Lab, Hobart, Tas, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sensor faults or communication errors can cause certain sensor readings to become unavailable for prediction purposes. In this paper we evaluate the performance of imputation techniques and techniques that ignore the missing values, in scenarios: (i) when values are missing only during prediction phase, and (ii) when values are missing during both the induction and prediction phase. We also investigated the influence of different scales of missingness on the performance of these treatments. The results can be used as a guideline to facilitate the choice of different missing value treatments under different circumstances.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Use of percentage change to impute missing population total
    Oshungade, Isaac Olayiwola
    Modelling, Measurement & Control D, 1996, 14 (1-2):
  • [42] Gore vs. Bush - Missing: Key body parts
    Birnbaum, JH
    FORTUNE, 2000, 141 (10) : 82 - 82
  • [43] A deep learning-based, unsupervised method to impute missing values in electronic health records for improved patient management
    Xu, Da
    Hu, Paul Jen-Hwa
    Huang, Ting-Shuo
    Fang, Xiao
    Hsu, Chih-Chin
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 111
  • [44] Bayes factors vs. P-values
    Assaf, A. George
    Tsionas, Mike
    TOURISM MANAGEMENT, 2018, 67 : 17 - 31
  • [45] A Deep Learning-Based Unsupervised Method to Impute Missing Values in Patient Records for Improved Management of Cardiovascular Patients
    Xu, Da
    Sheng, Jessica Qiuhua
    Hu, Paul Jen-Hwa
    Huang, Ting-Shuo
    Hsu, Chih-Chin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2260 - 2272
  • [46] Reconstruction of groundwater levels to impute missing values using singular and multichannel spectrum analysis: application to the Ardabil Plain, Iran
    Semiromi, Majid Taie
    Koch, M.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2019, 64 (14): : 1711 - 1726
  • [47] Influence of missing values on the prediction of a stationary time series
    Bondon, P
    JOURNAL OF TIME SERIES ANALYSIS, 2005, 26 (04) : 519 - 525
  • [48] Ordering attributes for missing values prediction and data classification
    Hruschka, ER
    Ebecken, NFF
    DATA MINING III, 2002, 6 : 593 - 601
  • [49] Ensemble learning for wind profile prediction with missing values
    Haibo He
    Yuan Cao
    Yi Cao
    Jinyu Wen
    Neural Computing and Applications, 2013, 22 : 287 - 294
  • [50] Dealing with Missing Values for Effective Prediction of NPC Recurrence
    Kumdee, Orrawan
    Ritthipravat, Panrasee
    Bhongmakapat, Thongchai
    Cheewaruangroj, Wichit
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1231 - +