Impute vs. Ignore: Missing Values for Prediction

被引:0
|
作者
Zhang, Qianyu [1 ]
Rahman, Ashfaqur [1 ]
D'Este, Claire [1 ]
机构
[1] CSIRO, Intelligent Sensing & Syst Lab, Hobart, Tas, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sensor faults or communication errors can cause certain sensor readings to become unavailable for prediction purposes. In this paper we evaluate the performance of imputation techniques and techniques that ignore the missing values, in scenarios: (i) when values are missing only during prediction phase, and (ii) when values are missing during both the induction and prediction phase. We also investigated the influence of different scales of missingness on the performance of these treatments. The results can be used as a guideline to facilitate the choice of different missing value treatments under different circumstances.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A method to impute missing date values
    Bayoumi, AM
    Goia, C
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2003, 18 : 140 - 140
  • [2] Missing covariate data in medical research: To impute is better than to ignore
    Janssen, Kristel J. M.
    Donders, A. Rogier T.
    Harrell, Frank E., Jr.
    Vergouwe, Yvonne
    Chen, Qingxia
    Grobbee, Diederick E.
    Moons, Karel G. M.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (07) : 721 - 727
  • [3] Clustering and Regression to Impute Missing Values of Robot Performance
    Arroyo, Angel
    Basurto, Nuno
    Cambra, Carlos
    Herrero, Alvaro
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 86 - 94
  • [4] Empirical Evaluation of Algorithms to impute Missing Values for Financial Dataset
    Purwar, Archana
    Singh, Sandeep Kumar
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON ISSUES AND CHALLENGES IN INTELLIGENT COMPUTING TECHNIQUES (ICICT), 2014, : 652 - 656
  • [5] A principal component method to impute missing values for mixed data
    Audigier, Vincent
    Husson, Francois
    Josse, Julie
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (01) : 5 - 26
  • [6] A principal component method to impute missing values for mixed data
    Vincent Audigier
    François Husson
    Julie Josse
    Advances in Data Analysis and Classification, 2016, 10 : 5 - 26
  • [7] MISSING RESPONSE DATA - TO IMPUTE OR NOT TO IMPUTE
    BOSWICK, JM
    LEE, KL
    CALIFF, RM
    TOPOL, EJ
    CONTROLLED CLINICAL TRIALS, 1988, 9 (03): : 261 - 261
  • [8] When Should We Ignore Examples with Missing Values?
    Lin, Wei-Chao
    Ke, Shih-Wen
    Tsai, Chih-Fong
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2017, 13 (04) : 53 - 63
  • [9] Web-based knowledge aquisition to impute missing values for classification
    Tang, N
    Vemuri, VR
    IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, 2004, : 124 - 130
  • [10] Suitable domains for using ordered attribute trees to impute missing values
    Lobo, OO
    Numano, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (02) : 262 - 270