An Embedded Interval Type-2 Neuro-Fuzzy Controller for Mobile Robot Navigation

被引:12
|
作者
Nurmaini, Siti [1 ]
Zaiton, Siti [2 ]
Norhayati, Dayang [2 ]
机构
[1] Univ Sriwijaya, Fac Comp Sci, Sriwijaya, Indonesia
[2] UTM, Fac Comp Sci & Informat Syst, Skudai, Malaysia
关键词
Interval type-2 fuzzy; WNNs classifier; embedded controller; mobile robot; navigation; SYSTEMS;
D O I
10.1109/ICSMC.2009.5346800
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes intelligent navigation using an embedded interval type-2 neuro fuzzy controller. Weightless neural network (WNNs) strategy is used because fast learning, easy hardware implementation and well suited to microcontroller-based-real-time systems. The WNNs utilizes previous sensor data and analyzes the situation of the current environment and classifies geometric feature such as U-shape, corridor and left or right corner. The behavior of mobile robot is implemented by means of interval type-2 fuzzy control rules can be generated directly from the WNNs classifier. This functionality is demonstrated on a mobile robot using modular platform and containing several microcontrollers implies the implementation of a robust architecture. The proposed architecture implemented using low cost range sensor and low cost microprocessor. The experiment results show, using that technique the source code is efficient. The mobile robot can recognize the current environment and to be able successfully avoid obstacle in real time and achieve smother motion compare than logic function and fuzzy type-1 controller.
引用
收藏
页码:4315 / +
页数:2
相关论文
共 50 条
  • [41] A Smart Sugeno Interval Type-2 Fuzzy Bee Colony Optimization to Stable an Autonomous Mobile Robot Controller
    Amador-Angulo, Leticia
    Castillo, Oscar
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 580 - 588
  • [42] Design of Interval Type-2 Fuzzy Relation-Based Neuro-Fuzzy Networks for Nonlinear Process
    Lee, Dong-Yoon
    Park, Keon-Jun
    COMPUTER APPLICATIONS FOR SECURITY, CONTROL AND SYSTEM ENGINEERING, 2012, 339 : 336 - +
  • [43] Hierarchical type-2 neuro-fuzzy BSP model
    Contreras, Roxana Jimenez
    Bernardes Rebuzzi Vellasco, Marley Maria
    Tanscheit, Ricardo
    INFORMATION SCIENCES, 2011, 181 (15) : 3210 - 3224
  • [44] A simple neuro-fuzzy controller for car-like robot navigation avoiding obstacles
    Baturone, Iluminada
    Gersnoviez, Andres A.
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1696 - 1701
  • [45] Neuro-fuzzy motion control for mobile robot
    Wei, W
    Mbede, JB
    Zhang, Y
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 507 - 512
  • [46] Neuro-fuzzy Network Control for a Mobile Robot
    Jang, Jun Oh
    Chung, Hee Tae
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2928 - +
  • [47] Interval type 2 neuro-fuzzy systems based on interval consequents
    Starczewski, J
    Rutkowski, L
    NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 570 - 577
  • [48] Obstacles Avoidance for Mobile Robot Using Type-2 Fuzzy Logic Controller
    Al-Mallah, Mohammad
    Ali, Mohammad
    Al-Khawaldeh, Mustafa
    ROBOTICS, 2022, 11 (06)
  • [49] Meta-Cognitive Interval Type-2 Neuro-Fuzzy Inference System for Wind Prediction
    Das, A. K.
    Suresh, S.
    Srikanth, N.
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [50] Improving Control of SST using Type-2 Neuro-Fuzzy Controller with Elliptic Membership Function
    Acikgoz, Hakan
    Sekkeli, Mustafa
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,