High-fidelity state transfer between leaky quantum memories

被引:4
|
作者
Soh, Daniel [1 ]
Chatterjee, Eric [1 ]
Eichenfield, Matt [2 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
FRAMEWORK; OUTPUT; INPUT;
D O I
10.1103/PhysRevResearch.3.033027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing the scattering-Lindblad-Hamiltonian formalism description of quantum network theory, we model the general problem of quantum state transfer between two disparate quantum memory blocks in an open quantum system. We derive an analytical expression for the fidelity of quantum state transfer between the memory blocks under the action of a specific phase space trajectory for each of the relevant classical control fields. We find a set of trajectories that maximize the state transfer fidelity between asymmetric systems. We show that, for the example where the mechanical modes of two optomechanical oscillators act as the quantum memory blocks, their optical modes and a waveguide channel connecting them can be used to achieve a quantum state transfer fidelity of 96% with realistic parameters using our optimal control solution. The effects of the intrinsic losses and the asymmetries in the physical memory parameters are discussed quantitatively.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] High-fidelity quantum state transfer and strong coupling in a hybrid NV center coupled to CPW cavity system
    Liao, Qinghong
    Fu, Yanchao
    Hu, Jiangong
    CHINESE JOURNAL OF PHYSICS, 2020, 66 : 9 - 14
  • [32] High-fidelity topological quantum state transfers in a cavity-magnon system
    Bao, Xi-Xi
    Guo, Gang-Feng
    Yang, Xu
    Tan, Lei
    CHINESE PHYSICS B, 2023, 32 (08)
  • [33] High-fidelity realization of the AKLT state on a NISQ-era quantum processor
    Chen, Tianqi
    Shen, Ruizhe
    Lee, Ching Hua
    Yang, Bo
    SCIPOST PHYSICS, 2023, 15 (04):
  • [34] Exploiting boundary states of imperfect spin chains for high-fidelity state transfer
    Bruderer, M.
    Franke, K.
    Ragg, S.
    Belzig, W.
    Obreschkow, D.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [35] Cluster-State Quantum Computing Enhanced by High-Fidelity Generalized Measurements
    Biggerstaff, D. N.
    Kaltenbaek, R.
    Hamel, D. R.
    Weihs, G.
    Rudolph, T.
    Resch, K. J.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [36] High-fidelity quantum tomography with imperfect measurements
    Bantysh, B., I
    Fastovets, D., V
    Bogdanov, Yu, I
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022
  • [37] High-fidelity quantum gates in the presence of dispersion
    Khani, B.
    Merkel, S. T.
    Motzoi, F.
    Gambetta, Jay M.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [38] Quantum Computing in Silicon Goes High-Fidelity
    不详
    CHEMICAL ENGINEERING PROGRESS, 2022, 118 (03) : 5 - 6
  • [39] Fast high-fidelity multiqubit state transfer with long-range interactions
    Hong, Yifan
    Lucas, Andrew
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [40] Localization properties and high-fidelity state transfer in hopping models with correlated disorder
    Almeida, G. M. A.
    Mendes, C. V. C.
    Lyra, M. L.
    de Moura, F. A. B. F.
    ANNALS OF PHYSICS, 2018, 398 : 180 - 189