Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping

被引:8
|
作者
Wang, Yongpeng [1 ]
Yu, Hong [1 ]
Wang, Guoyin [1 ]
Xie, Yongfang [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
cross-domain recommendation; sentiment analysis; latent sentiment review feature; non-linear mapping;
D O I
10.3390/e22040473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cross-domain recommendation is a promising solution in recommendation systems by using relatively rich information from the source domain to improve the recommendation accuracy of the target domain. Most of the existing methods consider the rating information of users in different domains, the label information of users and items and the review information of users on items. However, they do not effectively use the latent sentiment information to find the accurate mapping of latent features in reviews between domains. User reviews usually include user's subjective views, which can reflect the user's preferences and sentiment tendencies to various attributes of the items. Therefore, in order to solve the cold-start problem in the recommendation process, this paper proposes a cross-domain recommendation algorithm (CDR-SAFM) based on sentiment analysis and latent feature mapping by combining the sentiment information implicit in user reviews in different domains. Different from previous sentiment research, this paper divides sentiment into three categories based on three-way decision ideas-namely, positive, negative and neutral-by conducting sentiment analysis on user review information. Furthermore, the Latent Dirichlet Allocation (LDA) is used to model the user's semantic orientation to generate the latent sentiment review features. Moreover, the Multilayer Perceptron (MLP) is used to obtain the cross domain non-linear mapping function to transfer the user's sentiment review features. Finally, this paper proves the effectiveness of the proposed CDR-SAFM framework by comparing it with existing recommendation algorithms in a cross-domain scenario on the Amazon dataset.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Cross-domain sentiment aware word embeddings for review sentiment analysis
    Jun Liu
    Shuang Zheng
    Guangxia Xu
    Mingwei Lin
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 343 - 354
  • [32] CRAS: cross-domain recommendation via aspect-level sentiment extraction
    Zhang, Fan
    Zhou, Yaoyao
    Sun, Pengfei
    Xu, Yi
    Han, Wanjiang
    Huang, Hongben
    Chen, Jinpeng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (09) : 5459 - 5477
  • [33] Sliced Wasserstein based Canonical Correlation Analysis for Cross-Domain Recommendation
    Zhao, Zian
    Nie, Jie
    Wang, Chenglong
    Huang, Lei
    PATTERN RECOGNITION LETTERS, 2021, 150 : 33 - 39
  • [34] Cross-Domain Sentiment Analysis Based on Small in-Domain Fine-Tuning
    Kotelnikova, Anastasia V.
    Vychegzhanin, Sergey V.
    Kotelnikov, Evgeny V.
    IEEE ACCESS, 2023, 11 : 41061 - 41074
  • [35] Cross-domain aspect-based sentiment analysis using domain adversarial training
    Joris Knoester
    Flavius Frasincar
    Maria Mihaela Truşcǎ
    World Wide Web, 2023, 26 : 4047 - 4067
  • [36] Counterfactual Representation Augmentation for Cross-Domain Sentiment Analysis
    Wang, Ke
    Wan, Xiaojun
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1979 - 1990
  • [37] Multi-graph Convolutional Feature Transfer for Cross-domain Recommendation
    Zhang, Yanling
    Liu, Zhen
    Ma, Ying
    Gao, Yibo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [38] Semantic clustering-based cross-domain recommendation
    Kumar, Anil
    Kumar, Nitesh
    Hussain, Muzammil
    Chaudhury, Santanu
    Agarwal, Sumeet
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 137 - 141
  • [39] A Cross-Domain Recommendation Algorithm Based On Graph Optimization
    Fan, Zheng
    Wang, Ying-Li
    Ma, Qi-Tao
    Du, Hai-Xia
    Ma, Hong-Bin
    Journal of Network Intelligence, 2023, 8 (03): : 856 - 868
  • [40] Cross-Domain Item Recommendation Based on User Similarity
    Xu, Zhenzhen
    Jiang, Huizhen
    Kong, Xiangjie
    Kang, Jialiang
    Wang, Wei
    Xia, Feng
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2016, 13 (02) : 359 - 373