Decision Trees for Predicting Brain Tumors: A Case Study in Health Care

被引:1
|
作者
Jayanthi, Prisilla
Krishna, Iyyanki V. Murali [1 ]
Pavani, B. [2 ]
Sushmita, C. [3 ]
Chandana, G. [4 ]
Esther, Y. Evangelyne
Susheela, Mary [5 ]
机构
[1] JNTUH, R&D, Hyderabad, India
[2] Mahatma Jyotiba Phule, Residential Educ Inst Soc, Mahaboobnagar, India
[3] KLE Univ, Jawaharlal Nehru Med Coll, Belgaum, India
[4] South East Missouri State Univ, Human Performance & Recreat Coll, Dept Hlth, Cape Girardeau, MO USA
[5] Suprabath Inst Management, Hyderabad, Telangana, India
关键词
Decision trees; Health care; Machine learning; Supervised learning;
D O I
10.1007/978-981-13-1165-9_83
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the wide expansion of unstructured health data records, there is a need to organize in an effective manner and easy data access. The top-down approach can automatically assign the unstructured health records into a hierarchy with prior domain knowledge. Decision trees are reliable providing high classification accuracy with a simple representation of collected knowledge and effective decision-making technique that can be used in medical care. Decision trees can handle huge datasets with simple and fast integration. It is easy to predict the classification of unseen records using decision tree.
引用
收藏
页码:921 / 928
页数:8
相关论文
共 50 条
  • [41] Methodological aspects of using decision trees to characterise leiomyomatous tumors
    Decaestecker, C
    Remmelink, M
    Salmon, I
    Camby, I
    Goldschmidt, D
    Petein, M
    VanHam, P
    Pasteels, JL
    Kiss, R
    [J]. CYTOMETRY, 1996, 24 (01): : 83 - 92
  • [42] Brain Tumors in Children and Adolescents: Waiting Times of Brazilian Health Care System
    Balmant, N. V.
    De Paula Silva, N.
    de Sa Pereira, B. M.
    Silva de Souza, D.
    Terres Rodrigues, L.
    Fran Soares da Silva Rocha, M.
    Rezende Fonseca, N.
    Prestes Schmidt, T.
    Santos, M. D. O.
    de Camargo, B.
    [J]. PEDIATRIC BLOOD & CANCER, 2019, 66 : S208 - S208
  • [43] Predicting cognitive outcomes in children with brain tumors
    Micklewright, J. L.
    King, T. Z.
    Papazoglou, A.
    Mumaw, M. A.
    Morris, R. D.
    [J]. ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2006, 21 (06) : 538 - 538
  • [44] The role of decision models in health care policy: A case study (vol 36, pg 666, 2016)
    John-Baptiste, A.
    Schapira, M. M.
    Cravens, C.
    [J]. MEDICAL DECISION MAKING, 2018, 38 (06) : 761 - 761
  • [45] Boosted decision trees in the era of new physics: a smuon analysis case study
    Alan S. Cornell
    Wesley Doorsamy
    Benjamin Fuks
    Gerhard Harmsen
    Lara Mason
    [J]. Journal of High Energy Physics, 2022
  • [46] Decision Trees as a Tool for Data Analysis. Elections in Barcelona: A Case Study
    Armengol, E.
    Garcia-Cerdana, A.
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2020), 2020, 12256 : 261 - 272
  • [47] Discussing anomalous situations using decision trees: A head injury case study
    McQuatt, A
    Sleeman, D
    Andrews, PJD
    Corruble, V
    Jones, PA
    [J]. METHODS OF INFORMATION IN MEDICINE, 2001, 40 (05) : 373 - 379
  • [48] A Wrapper Evolutionary Approach for Supervised Multivariate Discretization: A Case Study on Decision Trees
    Ramirez-Gallego, Sergio
    Garcia, Salvador
    Manuel Benitez, Jose
    Herrera, Francisco
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS, CORES 2015, 2016, 403 : 47 - 58
  • [49] Boosted decision trees in the era of new physics: a smuon analysis case study
    Cornell, Alan S.
    Doorsamy, Wesley
    Fuks, Benjamin
    Harmsen, Gerhard
    Mason, Lara
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [50] Discovering Patterns in Brain Signals Using Decision Trees
    Bastos, Narusci S.
    Adamatti, Diana F.
    Billa, Cleo Z.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016