Insight into the Nanotribological Mechanism of Two-Dimensional Covalent Organic Frameworks

被引:11
|
作者
Tan, Shanchao [1 ,2 ]
Wang, Kunpeng [1 ]
Zeng, Qingdao [2 ,3 ]
Liu, Yuhong [1 ]
机构
[1] Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
[2] Natl Ctr Nanosci & Technol NCNST, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks (COFs); nanotribology; two-dimensional (2D) materials; host-guest assembly; superlubricity; 2D MATERIALS; GRAPHENE; FRICTION; CALIBRATION; FORCE;
D O I
10.1021/acsami.2c08269
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) materials are promising in reducing friction-induced energy loss and wear in automotive and electronics industries because of their superior tribological performance. As a kind of organic 2D materials, the structure and functionality of covalent organic frameworks (COFs) are much easier to tailor compared to other inorganic 2D materials, which expand their potential application in a Micro-Electro-Mechanical System (MEMS). In this manuscript, several kinds of COFs are synthesized and characterized on the surface of highly oriented pyrolytic graphite (HOPG) to investigate the nanotribological mechanism of organic 2D materials. It is surprisingly revealed that the friction coefficients of surface COFs are positively correlated with the pore sizes of honeycomb networks. The COFs with smaller pores would have a smoother potential energy surface and exhibit a lower friction coefficient. Besides, the porous structures of surface COFs make them good candidates to be host templates. The host-guest assembly structures are successfully constructed after introducing coronene molecules, and these host-guest systems display higher friction coefficients because the assembly structure of the guest molecules would be perturbed during the friction process and bring additional slip energy barriers, but the capacity of COFs to form composite assembly with functional guest molecules greatly promotes their further application in the MEMS.
引用
收藏
页码:40173 / 40181
页数:9
相关论文
共 50 条
  • [31] Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage
    Mandal, Amal Kumar
    Mahmood, Javeed
    Baek, Jong-Beom
    CHEMNANOMAT, 2017, 3 (06): : 373 - 391
  • [32] Synthesis of Two-Dimensional Covalent Organic Frameworks in Ionic Liquids
    Gao, Yanan
    Wang, Chang
    Hu, Hui
    Ge, Rile
    Lu, Meihuan
    Zhang, Jianqiang
    Li, Zhongping
    Shao, Pengpeng
    Jiang, Donglin
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (68) : 15488 - 15492
  • [33] Exceptional electron conduction in two-dimensional covalent organic frameworks
    Jin, Enquan
    Geng, Keyu
    Fu, Shuai
    Yang, Sheng
    Kanlayakan, Narissa
    Addicoat, Matthew A.
    Kungwan, Nawee
    Geurs, Johannes
    Xu, Hong
    Bonn, Mischa
    Wang, Hai, I
    Smet, Jurgen
    Kowalczyk, Tim
    Jiang, Donglin
    CHEM, 2021, 7 (12): : 3309 - 3324
  • [34] Improved synthesis and properties of two-dimensional covalent organic frameworks
    Dichtel, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] Star-shaped two-dimensional covalent organic frameworks
    Feng, Xiao
    Dong, Yuping
    Jiang, Donglin
    CRYSTENGCOMM, 2013, 15 (08): : 1508 - 1511
  • [36] Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks
    Thomas, Simil
    Li, Hong
    Zhong, Cheng
    Matsumoto, Michio
    Dichtel, William R.
    Bredas, Jean-Luc
    CHEMISTRY OF MATERIALS, 2019, 31 (09) : 3051 - 3065
  • [37] Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities
    Zhao, Ruoyu
    Wang, Teng
    Li, Junjun
    Shi, Yongxia
    Hou, Man
    Yang, Yong
    Zhang, Zhicheng
    Lei, Shengbin
    NANO RESEARCH, 2023, 16 (07) : 8570 - 8595
  • [38] Nucleation-Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks
    Li, Haoyuan
    Evans, Austin M.
    Castano, Ioannina
    Strauss, Michael J.
    Dichtel, William R.
    Bredas, Jean-Luc
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (03) : 1367 - 1374
  • [39] Engineering the Electronic and Thermal Properties of Two-Dimensional Covalent Organic Frameworks
    Rahman, Muhammad A.
    Thakur, Sandip
    Hopkins, Patrick E.
    Giri, Ashutosh
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23): : 11157 - 11166
  • [40] Two-dimensional covalent-organic frameworks for ultrahigh iodine capture
    Li, Jinheng
    Zhang, Huixin
    Zhang, Lingyan
    Wang, Ke
    Wang, Zhengkang
    Liu, Guiyan
    Zhao, Yanli
    Zeng, Yongfei
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (19) : 9523 - 9527