mirConnX: condition-specific mRNA-microRNA network integrator

被引:81
|
作者
Huang, Grace T. [1 ,2 ,3 ]
Athanassiou, Charalambos [2 ]
Benos, Panayiotis V. [1 ,2 ,3 ]
机构
[1] Univ Pittsburgh, Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA USA
[3] Univ Pittsburgh, Clin & Translat Sci Inst, Pittsburgh, PA USA
基金
美国国家卫生研究院;
关键词
GENE ONTOLOGY; TARGETS; DATABASE; EXPRESSION; GLIOMA; TOOL; WEB;
D O I
10.1093/nar/gkr276
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
mirConnX is a user-friendly web interface for inferring, displaying and parsing mRNA and microRNA (miRNA) gene regulatory networks. mirConnX combines sequence information with gene expression data analysis to create a disease-specific, genome-wide regulatory network. A prior, static network has been constructed for all human and mouse genes. It consists of computationally predicted transcription factor (TF)-gene associations and miRNA target predictions. The prior network is supplemented with known interactions from the literature. Dynamic TF- and miRNA-gene associations are inferred from user-provided expression data using an association measure of choice. The static and dynamic networks are then combined using an integration function with user-specified weights. Visualization of the network and subsequent analysis are provided via a very responsive graphic user interface. Two organisms are currently supported: Homo sapiens and Mus musculus. The intuitive user interface and large database make mirConnX a useful tool for clinical scientists for hypothesis generation and explorations. mirConnX is freely available for academic use at http://www.benoslab.pitt.edu/mirconnx.
引用
收藏
页码:W416 / W423
页数:8
相关论文
共 50 条
  • [21] Differential dependency network analysis to identify condition-specific topological changes in biological networks
    Zhang, Bai
    Li, Huai
    Riggins, Rebecca B.
    Zhan, Ming
    Xuan, Jianhua
    Zhang, Zhen
    Hoffman, Eric P.
    Clarke, Robert
    Wang, Yue
    BIOINFORMATICS, 2009, 25 (04) : 526 - 532
  • [22] WMAXC: A Weighted Maximum Clique Method for Identifying Condition-Specific Sub-Network
    Amgalan, Bayarbaatar
    Lee, Hyunju
    PLOS ONE, 2014, 9 (08):
  • [23] COSINE: COndition-SpecIfic sub-NEtwork identification using a global optimization method
    Ma, Haisu
    Schadt, Eric E.
    Kaplan, Lee M.
    Zhao, Hongyu
    BIOINFORMATICS, 2011, 27 (09) : 1290 - 1298
  • [24] Construction of Condition-Specific Gene Regulatory Network Using Kernel Canonical Correlation Analysis
    Jeong, Dabin
    Lim, Sangsoo
    Lee, Sangseon
    Oh, Minsik
    Cho, Changyun
    Seong, Hyeju
    Jung, Woosuk
    Kim, Sun
    FRONTIERS IN GENETICS, 2021, 12
  • [25] The time has come for condition-specific fetal surveillance
    Vintzileos, AM
    PRENATAL AND NEONATAL MEDICINE, 2000, 5 (02): : 73 - 75
  • [26] Identification of condition-specific biomarker systems in uterine cancer
    Hickman, Allison R.
    Hang, Yuqing
    Pauly, Rini
    Feltus, Frank A.
    G3-GENES GENOMES GENETICS, 2022, 12 (01):
  • [27] Are condition-specific measures necessary to the practice of personalized medicine?
    Keller, San
    Yang, Manshu
    Evensen, Christian
    Treadwell, Marsha
    QUALITY OF LIFE RESEARCH, 2012, 21 : 31 - 31
  • [28] Condition-specific target prediction from motifs and expression
    Meng, Guofeng
    Vingron, Martin
    BIOINFORMATICS, 2014, 30 (12) : 1643 - 1650
  • [29] PINTnet: construction of condition-specific pathway interaction network by computing shortest paths on weighted PPI
    Moon, Ji Hwan
    Lim, Sangsoo
    Jo, Kyuri
    Lee, Sangseon
    Seo, Seokjun
    Kim, Sun
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [30] General and condition-specific essential functions of Pseudomonas aeruginosa
    Lee, Samuel A.
    Gallagher, Larry A.
    Thongdee, Metawee
    Staudinger, Benjamin J.
    Lippman, Soyeon
    Singh, Pradeep K.
    Manoil, Colin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (16) : 5189 - 5194