Hierarchical fuzzy design by a multi-objective evolutionary hybrid approach

被引:3
|
作者
Jarraya, Yosra [1 ]
Bouaziz, Souhir [1 ]
Alimi, Adel M. [1 ]
Abraham, Ajith [2 ,3 ]
机构
[1] Univ Sfax, Natl Sch Engineers ENIS, Res Grp Intelligent Machines REGIM Lab, BP 1173, Sfax 3038, Tunisia
[2] Machine Intelligence Res Labs MIR Labs, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
关键词
Hierarchical design; Type-2 fuzzy systems; Beta basis function; Structure learning; Multi-objective optimization; Parameter tuning; LOGIC SYSTEMS; ALGORITHM; PREDICTION; CLASSIFICATION; IDENTIFICATION; INFERENCE; SELECTION; INTERVAL; RULES;
D O I
10.1007/s00500-019-04129-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new tree hierarchical representation of type-2 fuzzy systems. The proposed system is called the type-2 hierarchical flexible beta fuzzy system (T2HFBFS) and is trained based on two-phase optimization mechanism. The first optimization step is a multi-objective structural learning phase. This phase is based on the multi-objective extended immune programming algorithm and aims to obtain an improved T2HFBFS structure with good interpretability-accuracy trade-off. The second optimization step is a parameter tuning phase. Using a hybrid evolutionary algorithm, this phase allows the adjustment of antecedent and consequent membership function parameters of the obtained T2HFBFS. By interleaving the two learning steps, an optimal and accurate hierarchical type-2 fuzzy system is derived with the least number of possible rules. The performance of the system is evaluated by conducting case studies for time series prediction problems and high-dimensional classification problems. Results prove that the T2HFBFS could attain superior performance than other existing approaches in terms of achieving high accuracy with a significant rule reduction.
引用
收藏
页码:3615 / 3630
页数:16
相关论文
共 50 条
  • [21] Multi-objective evolutionary computation and fuzzy optimization
    Jimenez, F.
    Cadenas, J. M.
    Sanchez, G.
    Gomez-Skarmeta, A. F.
    Verdegay, J. L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 43 (01) : 59 - 75
  • [22] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75
  • [23] A multi-objective evolutionary algorithm for fuzzy modeling
    Jiménez, F
    Gómez-Skarmeta, AF
    Roubos, H
    Babuska, R
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1222 - 1228
  • [24] Multi-Objective Evolutionary formulations for design of hybrid Earth observing constellations
    Buzzi, Pau Garcia
    Selva, Daniel
    ACTA ASTRONAUTICA, 2022, 200 : 420 - 434
  • [25] Useful multi-objective hybrid evolutionary approach to optimal power flow
    Das, DB
    Patvardhan, C
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2003, 150 (03) : 275 - 282
  • [26] Evolutionary Multi-Objective Bacterial Swarm Optimization (MOBSO): A Hybrid Approach
    Banerjee, Indranil
    Das, Prasun
    SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 568 - +
  • [27] Useful multi-objective hybrid evolutionary approach to optimal power flow
    Bhagwan Das, D.
    Patvardhan, C.
    IEE Proceedings: Communications, 2003, 150 (03): : 275 - 282
  • [28] A Hybrid Surrogate-Based Approach for Evolutionary Multi-Objective Optimization
    Rosales-Perez, Alejandro
    Coello Coello, Carlos A.
    Gonzalez, Jesus A.
    Reyes-Garcia, Carlos A.
    Jair Escalante, Hugo
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2548 - 2555
  • [29] A fuzzy multi-objective approach for a meat supply chain design
    Mohammed, Ahmed
    Wang, Qian
    2016 22ND INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2016, : 71 - 77
  • [30] A Hybrid Framework for Evolutionary Multi-objective Optimization
    Sindhya, Karthik
    Miettinen, Kaisa
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) : 495 - 511