Simplifying continuous-time quantum walks on dynamic graphs

被引:2
|
作者
Herrman, Rebekah [1 ]
Wong, Thomas G. [2 ]
机构
[1] Univ Tennessee, Dept Ind & Syst Engn, Knoxville, TN 37996 USA
[2] Creighton Univ, Dept Phys, 2500 Calif Plaza, Omaha, NE 68178 USA
关键词
Quantum walk; Quantum gates; Dynamic graph;
D O I
10.1007/s11128-021-03403-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous-time quantum walk on a dynamic graph evolves by Schrodinger's equation with a sequence of Hamiltonians encoding the edges of the graph. This process is universal for quantum computing, but in general, the dynamic graph that implements a quantum circuit can be quite complicated. In this paper, we give six scenarios under which a dynamic graph can be simplified, and they exploit commuting graphs, identical graphs, perfect state transfer, complementary graphs, isolated vertices, and uniform mixing on the hypercube. As examples, we simplify dynamic graphs, in some instances allowing single-qubit gates to be implemented in parallel.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Zero transfer in continuous-time quantum walks
    Sett, A.
    Pan, H.
    Falloon, P. E.
    Wang, J. B.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (05)
  • [32] CONTINUOUS TIME QUANTUM WALKS AND QUOTIENT GRAPHS
    Sufiani, R.
    Nami, S.
    Golmohammadi, M.
    Jafarizadeh, M. A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (03) : 1005 - 1017
  • [33] Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory
    S. Salimi
    Quantum Information Processing, 2010, 9 : 75 - 91
  • [34] Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory
    Salimi, S.
    QUANTUM INFORMATION PROCESSING, 2010, 9 (01) : 75 - 91
  • [36] Dynamics of continuous-time quantum walks in restricted geometries
    Agliari, E.
    Blumen, A.
    Muelken, O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (44)
  • [37] Mixing and decoherence in continuous-time quantum walks on cycles
    Center for Quantum Device Technology, Department of Physics, Clarkson University, Potsdam, NY 13699, United States
    不详
    不详
    Quantum Inf. Comput., 2006, 3 (263-276):
  • [38] Link prediction with continuous-time classical and quantum walks
    Goldsmith, Mark
    García-Pérez, Guillermo
    Malmi, Joonas
    Rossi, Matteo A.C.
    Saarinen, Harto
    Maniscalco, Sabrina
    arXiv, 2022,
  • [39] Continuous-time quantum walks on multilayer dendrimer networks
    Galiceanu, Mircea
    Strunz, Walter T.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [40] One-Dimensional Continuous-Time Quantum Walks
    ben-Avraham, D.
    Bollt, E. M.
    Tamon, C.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 295 - 308