Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models

被引:8
|
作者
Das Roy, Dipanjan [1 ]
Shin, Dongwan [1 ]
机构
[1] New Mexico Inst Min & Technol, Comp Sci & Engn, Secure Comp Lab, Socorro, NM 87801 USA
基金
美国国家科学基金会;
关键词
smart grid; security; intrusion detection; imbalanced data; machine learning;
D O I
10.1109/ictc46691.2019.8939744
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
引用
收藏
页码:576 / 581
页数:6
相关论文
共 50 条
  • [21] Improving Intrusion Detection for Imbalanced Network Traffic using Generative Deep Learning
    Alqarni, Amani A.
    El-Alfy, El-Sayed M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 959 - 967
  • [22] Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems
    Thapa, Niraj
    Liu, Zhipeng
    Kc, Dukka B.
    Gokaraju, Balakrishna
    Roy, Kaushik
    FUTURE INTERNET, 2020, 12 (10) : 1 - 16
  • [23] Machine Learning With Variational AutoEncoder for Imbalanced Datasets in Intrusion Detection
    Lin, Ying-Dar
    Liu, Zi-Qiang
    Hwang, Ren-Hung
    Van-Linh Nguyen
    Lin, Po-Ching
    Lai, Yuan-Cheng
    IEEE ACCESS, 2022, 10 : 15247 - 15260
  • [24] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [25] Comparative Analysis of Machine Learning Models in Computer Network Intrusion Detection
    Osa, Edosa
    Oghenevbaire, Ogodo Efevberha
    2022 IEEE NIGERIA 4TH INTERNATIONAL CONFERENCE ON DISRUPTIVE TECHNOLOGIES FOR SUSTAINABLE DEVELOPMENT (IEEE NIGERCON), 2022, : 648 - 652
  • [26] Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 GOOSE Messages
    Ustun, Taha Selim
    Hussain, S. M. Suhail
    Ulutas, Ahsen
    Onen, Ahmet
    Roomi, Muhammad M.
    Mashima, Daisuke
    SYMMETRY-BASEL, 2021, 13 (05):
  • [27] Detection of Sources of Instability in Smart Grids Using Machine Learning Techniques
    Moldovan, Dorin
    Salomie, Ioan
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 175 - 182
  • [28] Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic
    Abdulhammed, Razan
    Faezipour, Miad
    Abuzneid, Abdelshakour
    AbuMallouh, Arafat
    IEEE SENSORS LETTERS, 2019, 3 (01)
  • [29] Intrusion Detection on the In-Vehicle Network Using Machine Learning
    Sharmin, Shaila
    Mansor, Hafizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 26 - 31
  • [30] Investigating Network Intrusion Detection Datasets Using Machine Learning
    Amaizu, Gabriel Chukwunonso
    Nwakanma, Cosmas Ifeanyi
    Lee, Jae-Min
    Kim, Dong-Seong
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1325 - 1328